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I. Introduction 

Armed with the tools for metaphysical, methodological and conceptual-logical in-depth 

analyses of specific theories, philosophy of physics seeks to deepen our understanding of 

modern physics, and aspires to offer tentative heuristic guidance to scientists (see e.g. 

Kanitscheider, 2009).  

This dissertation will centre upon a particularly knotty conundrum within philosophy of 

physics: the re-conceptualisation of gravity as a manifestation of the curved geometry of 

spacetime, inaugurated by Einstein’s theory of General Relativity (GR). Whereas in standard 

Newtonian theory gravity is conceived of as a force deflecting particles from their rectilinear 

paths of inertial/force-free motion, according to GR‘s geometric interpretation, they trace out 

– like (frictionless) snowboarders gliding in a half-pipe – the shortest paths of a non-Euclidean 

geometry of spacetime (the fusion of space and time, no longer immutable or mutually 

independent).  

Notwithstanding GR‘s indubitable success as a physical theory, the “geometrisation“ of 

gravitational physics that it’s supposed to instantiate, poses a number of formidable 

philosophical challenges. One is to articulate the precise sense in which theories can be said 

to geometrise physics. This may be perceived as a particularly pressing task not only for 

systematic reasons (epitomised in the rich historical literature on unified field theories 

modelled on, or inspired by GR’s geometrisation, see e.g. Vizgin, 2011; Goenner, 2004). 

Ironically, Einstein himself disavowed GR‘s geometric interpretation – an interpretation that 

is nowadays considered orthodoxy (attested to, for instance, by Misner, Thorne & Wheeler, 

1973). For Einstein, geometrising gravity not only was inessential to GR; he even disputed that 

it has a substantive meaning, at all (see Lehmkuhl, 2014 for details).1  

Once different senses of geometrisation are forthcoming, another question immediately 

ensues: to what extent do (or can) they be applied to GR (and other theories)? In our 

endeavour to deepen our understanding of GR and its peculiarities, we must be wary of the 

pitfalls of gravity/GR-“exceptionalist“ (Pitts, 2016ab, 2017, 2019) double standards. 

Therefore, also a comparison with other theories – both gravitational, e.g. Brans-Dicke Theory, 

                                                           
1 The emphasis on geometisation of (gravitational) physics was championed in particular by Weyl and Eddington 
(see e.g. Ryckman, 2005, Ch. 8-9; 2017, sect. 5)  
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and non-gravitational, e.g. Yang-Mills theories of contemporary high-energy physics – is 

apposite: to what extent may they, too, be legitimately classified as geometric theories?  

Finally, these questions pave the way for a normative question: should we adopt GR’s 

geometric interpretation? What are its advantages vis-à-vis, say, Einstein’s own unificatory 

interpretation (Lehmkuhl, 2014), or Feynman’s (1995) (and others’) spin-2 graviton view (cf. 

Salimkhani, 2020)?  

In his seminal work, Lehmkuhl (2009a; 2009b, Ch. IX; 2014; cf. Goenner, 2008) has addressed 

the first set of questions – concerning the explication of geometrisation. He distinguishes 

between three kinds (or “strengths“):  

• Strength-1 geometrisation dresses up field theories in geometric clothing. The fiber bundle 

formulation of electromagnetism is a case in point: while in such a representation everything 

looks geometric, we have prima facie little reason to regard the theory as describing anything 

inherently related to spacetime geometry.  

• In strength-2 geometrisation, physical degrees of freedom can be accounted for in terms of 

geometric properties (e.g. topology, curvature, or torsion) of augmented spacetime structure.2 

An example is Weyl’s (1918, 1919) unified field theory. In it, the electromagnetic field is re-

conceptualised (“strength-2 geometrised“) as a manifestation of what Weyl called “length 

curvature“ of a non-Riemannian spacetime (i.e. a spacetime in whose geometry parallel 

transport of vectors alters their length).   

• Strength-3 geometrisation, paradigmatically instantiated by GR’s geometric interpretation, is 

essentially eliminative: a geometric theory of strength-3 reduces physical degrees of freedom 

to manifestations of (a universal) inertial structure3 – a preferred path structure of “natural“, 

uncaused/default motion that, for instance, force-force test particles trace out.    

                                                           
2 One may wonder to what extent the gauge theory framework, couched in the geometric language of fibre 
bundles (see e.g. Naber, 2011, Ch. 4-6), falls under strength-2 geometrisation: for the relevant “enriched“ 
geometries, to each point an internal space (representing the internal degrees of freedom, such as, say, isospin 
or colour) is attached. Such a thesis – under the apt label “geometrodynamics of gauge fields“ – has indeed been 
advocated by Mielke (1987).  
In this thesis, however, I won’t further pursue this intriguing question. Spacetime geometry will be treated 
throughout conservatively – as a geometry of external degrees of freedom (eliciting universal effects).   
3 I’ll gloss over details of this reduction to inertial structure – to be taken up in future work. In this regard, one 
question in particular seems important. It‘s related to the fact that GR, in contrast to theories such as those 
envisioned by Eddington (1923, Ch. VI, Part II) or Schrödinger (1950, Ch. 12) isn’t a purely affine theory. More 
precisely, the question is: to what extent does this inertia-reductive interpretation do full justice to GR’s actual 
physical content? Strictly speaking, inertial structure is given by affine structure, represented by GR‘s Levi-Civita 
connection. But GR is also – if not, first and foremost! – about metric structure (which, of course, determines the 
affine structure, due to the metric compatibility of the assumed underlying Riemannian geometry), containing 
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Drawing on Lehmkuhl’s classification, the subsequent work will hone in on the ramifications 

of the different strengths of geometrisation: what follows for a geometric theory‘s ontology 

and ideology (in the sense of Quine, 1951)? That is: what can meaningfully be said about the 

world within this theory‘s conceptual resources? Primarily, I’ll be concerned with strength-3 

geometrisation – desirable, qua parsimony, for its unificatory power (cf. Kitcher, 1981, 1989): 

taking a “strength-3 geometric“ theory at face value, what propositions about the world would 

be true, if this theory were to be accepted? 

I’ll focus on energy and energy conservation – two notions integral to virtually all of physics, 

and usually deemed fundamental (cf. Hiebert, 1962; Lindsay, 1971; Elkana, 1974; Harman, 

1982 for a historical perspective on their centrality).  

In modern spacetime theories, their status, however, can’t be taken for granted anymore. 

Consider, for instance, the following tentative suggestions:  

• In Analytic Mechanics, conservation of energy and momentum are usually presented as 

associated with the homogeneity of time and space, respectively (see e.g. Landau & Lifshitz, 

1976, Ch. 2). But if spacetime theories typically allow for space and time to be warped, 

shouldn’t we expect energy-momentum conservation to forfeit its unqualified validity? 

• Norton (2003, p. 20) writes: “The first thing that one learns in approaching general relativity is 

that the notion of force has been compromised. […] It has been ‘geometrised away‘. But one 

cannot geometrise away force without other ramifications. If gravitational force has somehow 

been compromised – geometrised away – then we should expect the same to happen to the 

other dynamical quantities in [the equations ‘ENERGY = FORCE x SPACE‘ and ‘MOMENTUM= 

FORCE x TIME‘].“ Shouldn’t we likewise expect gravitational energy to be “geometrised away“? 

The working hypothesis that will guide the following analyses is thus: modern spacetime 

theories significantly affect the status of both energy and its conservation. The arguments 

proffered will turn both on conceptual analysis of various theories, as well as on explanatory 

practices.  

More specifically, I’ll moot two claims (to be fleshed out in greater detail in due course): 

                                                           
chronogeometric information (i.e. information about lengths, durations, volumes, and the causal/light-
cone/causal structure). Metric structure is indeed indispensable: the electromagnetic energy-stress tensor, for 
instance, requires a metric for its very definition; the Levi-Civita connection by itself doesn’t suffice (cf. Lehmkuhl, 
2011 for a more general elaboration of this thought). In light of this, it would seem more accurate to consider GR 
a theory that reduces gravity to chronogeometric-cum-inertial structure. 



8 
 

(C1) Geometrisation can force on us revisions of the status of the energy-momentum 

associated with the geometrised quantity (i.e. in the cases considered: gravity). In strength-3 

geometric theories of gravity, such as GR, in particular, gravitational energy becomes 

problematic: I’ll argue for eliminativism about it. 

(C2) Energy conservation is no longer a fundamental, apodictic principle. It’s contingent on 

whether the spacetime possesses appropriate symmetries. (Hence, the status of energy 

conservation is orthogonal to geometrisation per se.) For GR, in particular, energy-

conservation is violated (except in the absence of gravity).       

Such conclusions may appear radical – as perhaps befits a revolutionary theory like GR. Given 

the latter’s revolutionary character, we are well-advised to strive for its deeper understanding, 

especially of all of its consequences. With regard to radical revisions of our received 

conceptual toolkit, GR – or modern spacetime theories, more generally – doesn’t stand alone: 

quantum field theory and (a fortiori) semi-classical gravity (i.e. quantum field theory on curved 

spacetime) likewise face difficulties in even defining energy and its conservation (Kiefer, 2007, 

Ch. 1.2; Maudlin, Okon & Sudarsky, 2019).   

The present study has relevance for physics, philosophy of physics and metaphysics. It 

enhances our understanding of the deep link between spacetime structure and laws of nature 

in both GR and the most significant alternative theories of gravity (both historical and 

contemporary) – a topic both of intrinsic interest to metaphysics of physics (e.g. Friedman, 

1984, 2001; DiSalle, 2006; Belot, 2011; Lange, 2013; Sus, 2019), and furthermore at the heart 

of a major debate within philosophy of physics – that between advocates of so-called 

dynamical and geometric approach to spacetime, respectively (e.g. Brown, 2005; Brown & 

Read, 2019; Read 2019; Read, 2020; Weatherall, 2020).  

Specifically, by defending the view that on GR’s standard geometric interpretation, neither 

gravitational energy exists in GR – i.e. (C1) –nor that energy conservation holds without 

qualifications – i.e. (C2) – I’ll present a coherent solution to a long-standing dilemma in the GR 

literature: Gravitational energy seems to defy all attempts to localise it – that is, to specify in 

which region of spacetime it resides. Whereas orthodoxy (e.g. Misner, Thorne & Wheeler, 

1973, §20.4) deems this a brute fact one needs to swallow, the proposed solution, (C1) & (C2), 

offers an eliminative explanation of this fact (analogous to Lavoisier’s explanation of 

combustion by elimination of phlogiston).  



9 
 

This Gordian solution is intimately intertwined with black hole thermodynamics – a hot topic 

of current research, targeting a potentially fundamental link between thermodynamics and 

(general-relativistic) gravity (see e.g. Wallace, 2017ab; Curiel, 2019, sect.5). Gravitational 

energy features explicitly in the First Law, which states an energy conservation law via a 

relation between the black hole‘s area, angular momentum and electric charge. But to what 

extent the analogy between ordinary thermodynamics and the laws of black hole 

thermodynamics is substantive, remains controversial (Dougherty & Callender, 2019). The 

existence of gravitational energy and the validity of energy conservation in GR prima facie 

have a crucial bearing on this assessment.4  

The present project should attract also the interest of metaphysicians. Carrying energy is 

frequently cited (e.g. by Bunge, 2000 or Norton, 2003, p. 18) as a (sufficient) criterion for the 

reality of a physical entity. Thus, whether we can meaningfully assign energy-momentum to 

the metric – plausibly viewed as both encoding the gravitational degrees of freedom and 

endowed with spatiotemporal significance – plays a pivotal role in the debate over the 

substantival, “thing-like“ nature of spacetime (as opposed to the view that it‘s a fictitious 

abstraction into which we embed (for reasons of expedience) relational, spatiotemporal facts 

about material objects, see Earman, 1989; Friedman, 1983, Ch. VI for reviews). For instance, 

for Earman and Norton (1987, p. 519) the very categorical difference between substantival 

spacetime (“container”) and matter (“the content of spacetime”) hinges on energy: “If we do 

not classify such energy bearing structures [...] as contained within space-time, then we do 

not see how we can consistently divide between container and contained.” Eliminativism 

about gravitational energy raises the question (cf. Hoefer, 2000) whether carrying energy is a 

sufficient or also a necessary criterion for an entity’s reality. What could be alternative 

criteria?  

This is closely related to causal efficacy: on a widespread conception of causality (e.g. Salmon, 

1998; Dowe, 2000), transmission of energy-momentum is regarded as the essence of 

causation.5 Hence, on such models, spacetime structure – or more precisely, certain types of 

                                                           
4 A promising conjecture, compatible with both (C1) and (C2) in the context of GR, and, at the same time, an 
affirmative stance towards black hole thermodynamics, is that in the regime of black holes GR should be seen as 
merely an effective field theory description (cf. Crowther, 2016), not a fundamentally accurate description.  
This in turn engenders interesting questions regarding inter-theory relations, exhibited in the case of black hole 
thermodynamics. 
5 In this context, some authors have also seen a connection between the topics covered in this thesis and 
philosophy of mind – Leibniz’s question of how human minds/souls, construed as dualistic substances, could 
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geometrised quantities, affected by (C1) – doesn’t qualify as causally efficacious.  What about 

alternative models of causation, though – models that don’t rely on the transmission of 

energy-momentum (such as counterfactual theories, e.g. Reutlinger, 2016ab, 2017, 2018; 

French & Saatsi, 2018)? The denial of energy-momentum conservation and the existence of 

gravitational energy in certain gravitational theories thus invites case studies for such models 

of causation (cf. Hoefer, 2009, sect. 4), or even anti-realism about causality in the spirit of 

Russell (e.g. Norton, 2007; Ladyman & Ross, 2007, Ch. 5), i.e. the view that one should reject 

causality as a fundamental element of reality: to what extent do they apply to GR and other 

spacetime theories?   

This in turn feeds back into philosophy of physics: how should we construe the 

interdependence between spacetime structure and the matter degrees of freedom in 

strength-3 geometric theories of gravity, as encapsulated in the Einstein Equations (or their 

counterparts) – for instance, as a causal (in some metaphysically thick sense) interaction (as 

suggested by Wheeler, Misner and Thorne’s (1973, p. 5) famous slogan that “space tells 

matter how to move“, and conversely “matter tells space how to curve“), or merely as a 

nomological mutual constraint (see e.g. Nerlich, 2013, Ch. 8-9; Vasallo, 2019)?6   

Those exciting questions will have to be tackled in future research. The task for now is to study 

geometrisation of general-relativistic gravity and its ontological and ideological implications.  

This will be the unifying theme of the subsequent chapters – five case-studies of various 

theories of gravity, with special emphasis on GR – comprising this thesis. Finally, a disclaimer: 

throughout, I won’t question GR’s geometric interpretation, whose ramifications I intend to 

unpack (cf. however Dürr, ms). This premise is for purely systematic reasons: I deny neither 

the existence nor the merits of other interpretations.  

                                                           
interact with matter: at first blush, such an interaction would conflict with energy conservation (see Cucu & Pitts, 
2019; Pitts, 2019abc, 2020 for details). Given energy conservation, the mind/body dualism therefore, the 
argument concludes, becomes problematic.  
I deem such an emphasis on energy conservation largely a red herring. The real problem for an interactionist 
mind-body dualist (or an advocate of divine or “spiritual“ intervention) is more general. Suppose that one 
commits to the causal/nomological closure of the material/physical world, broadly construed, i.e. the view that 
reality is structured by uniform regularities, captured satisfactorily by laws of nature. Then, how to square this 
view with the influence of immaterial entities upon this world? Whether a particular scientific theories abandons 
energy conservation is irrelevant, as long as this causal closure remains intact: then, the laws of nature leave “no 
room“ for mental/spiritual (or divine) agency. The failure of energy conservation for which I’ll argue satisfies this 
priviso: it asserts a quantifiable non-conservation – the extent of which is specified by GR.   
6 This could shed light on how to understand the action-reaction principle and its epistemological and 
metaphysical status (cf. Brown & Lehmkuhl, 2013). 
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The thesis is structured as follows:  

Chapter II will critically examine the standard arguments, nigh-universally cited in the 

literature that are supposed to demonstrate that gravitational waves carry energy-

momentum. These standard arguments are taken to establish that gravitational energy must 

exist in GR.  

In Chapter III, I’ll analyse the status of energy conservation in GR,  and discuss various 

candidates for local (differential) notions of gravitational energy. Special emphasis is given to 

pseudotensors, and Pitts’ recent proposal.  

Chapter IV extends the analysis of the previous chapter to global (integral) notions of 

gravitational energy. Special attention is given to the status of asymptotic flatness as an 

idealisation. By critically evaluating a recent proposal by Read, I perspicuously state the 

challenges that realism about gravitational energy in GR faces.   

In Chapter V, I turn to Newtonian Gravity. I consider the status of gravitational energy in 

various formulations (of different strengths of geometrisation), with special emphasis on 

Newton-Cartan theory – a strength-3 geometrised variant of Newtonian Gravity.   

Chapter VI is a historical-critical study of Nordström Gravity, a precursor of GR. I present a 

more circumspect formulation of it that provides a unified – and as it turns out, strength-3 

geometric – description of both of its historical variants. This allows a clarification of the status 

of the Geodesic Principle, energy conservation and gravitational energy in Nordström Gravity.  

In Chapter VII, I summarise and evaluate the results of this dissertation. Lines of future inquiry 

are sketched.  
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The next chapter: 

Why assume that gravity should be ascribed energy? To be sure: An abnormally strong 

eruption of gravitational waves could tragically destroy the Radcliffe Camera or the Cathedral 

of Learning! But is that enough to warrant the claim? We’ll next critically examine the standard 

arguments for the belief that gravitational radiation in General Relativity “of course” carries 

energy.  
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II. Gravitational Waves and Energy Transport 

 

Abstract: 

In this chapter, I review and critically examine the four textbook arguments commonly taken 

to establish that gravitational waves (GWs) carry energy-momentum: 1. the increase in kinetic 

energy that a GW confers on a ring of test particles, 2.Bondi/Feynman’s Sticky Bead Argument 

of a GW heating up a detector, 3. nonlinearities within perturbation theory, construed as the 

gravity’s contribution to its own source, and 4. the Noether Theorems, linking symmetries and 

conserved quantities. As it stands, each argument is found to be either contentious, or 

incomplete in that it presupposes substantive assumptions which the standard exposition 

glosses over. I finally investigate the standard interpretation of binary systems, according to 

which orbital decay is explained by the system’s energy being dissipated via GW energy-

momentum transport. I contend that for the textbook treatment of binary systems an 

alternative interpretation, drawing only on the general-relativistic equations of motions and 

the Einstein Equations, is available. It’s argued to be even preferable to the standard 

interpretation. Thereby an inference to the best explanation for GW energy-momentum is 

blocked. I conclude that a defence of the claim that GWs carry energy can’t rest on the 

standard arguments.  

Key words: General Relativity, Gravitational Waves, Sticky Bead, binary systems, Problem of Motion  
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II.1. Introduction 

Do gravitational waves (GWs) carry energy-momentum? Many will deem this old hat. A 

contemporary monograph on GW astrophysics representatively proclaims: “Since 

gravitational waves produce a real physical effect […] – it is clear that the wave must be 

carrying energy” (Anderson & Creighton, 2011, p. 66). As a paradigmatic, “real physical effect” 

textbook orthodoxy adduces the orbital spin-up of double pulsars, discovered by Hulse and 

Taylor in 1974.  On the standard interpretation, the double pulsars are evidence for the energy 

which the GWs have radiated away. As a result, the system loses energy, and the pulsars’ 

orbits (equivalently: their orbital periods) decrease. This prediction has been corroborated 

with stunning accuracy (Will, 2014).  

Since the recent (repeated) direct detection of GWs, the existence of GWs is beyond 

reasonable dispute (cf. Castelvecchi & Witze, 2016). But perhaps the received interpretation 

that GWs transport energy and thereby deplete the binaries’ orbital energy deserves further 

reflections. Three thoughts that could seed some doubt might spring to mind.    

One thought is that the pulsars (modelled as dust particles) are in free-fall. Hence they move 

inertially. Shouldn’t their kinematic state therefore remain unaltered? In particular, shouldn’t 

the binaries preserve their energy (Petkov, 2012, Appendix C)?    

More generally, Norton (2012, sect. 3.9) has remarked: if in GR the gravitational force is 

“geometrised away” shouldn’t this compromise the notion of gravitational energy, as well? 

Closely related is a third thought, touching on energy-momentum conservation. As we know 

from Analytic Mechanics, conservation of energy and momentum is tied up with the 

symmetries of space and time (see, e.g., Landau & Lifshitz, 1976, §6). But isn’t space-time, 

according to GR, warped, generically lacking any symmetries? Shouldn’t this affect the validity 

of conservation laws? 

In this chapter, I critically examine the four standard arguments found in the astrophysics 

literature for ascribing GWs energy-momentum. I deny that these arguments succeed – at 

least, as they stand. The first two adduce phenomenological effects that GWs produce: the 

“argument from kinetic energy” concerns the change in kinetic energy of a ring of free 

particles hit by GWs (§2.1). The second effect, the “Sticky Bead Argument”, consists in the 



15 
 

heating-up of a detector whose constituents are held together by internal forces (§2.2). Of a 

more systematic nature are two further arguments: the natural energy-momentum of a GW, 

obtained from a decomposition of the metric into a background and perturbations (§2.3), and 

an application of Noether’s Theorem (§2.4), respectively. If the standard arguments for 

ascribing GWs energy-momentum fail, how then to account for their effects? §3 turns to the 

paradigmatic treatment of binary systems (§3.1-2). In (§3.3) I sketch how their problematic 

standard account in terms of the energy that GWs are supposed to transport can be replaced 

by an attractive alternative. It solely appeals to the general-relativistic equations of motion 

and the Einstein Equations. Thereby, an inference to the best explanation for GW energy-

momentum is blocked (§3.4). I outline two promising lines of further inquiry in §4. 

Clearly, if standard textbook arguments are unsatisfactory, greater attention –especially for 

non-experts and students – should be drawn to their lacunae (and how they might be filled). 

But the ramifications of my analysis are wider-reaching.  

One concerns the role of the standard arguments in motivating other approaches. My 

discussion of the standard arguments remains restricted to only a modicum of mathematical 

rigour. (Criticising the standard arguments for lack of rigour per se would miss the mark.) 

Nonetheless, they play an essential role in motivating mathematically more sophisticated 

approaches to GW energy, e.g. ADM energy, Komar mass or the Bondi-News-Function (for 

details, see e.g. Jaramillo & Gourgoulhon, 2010). In his state-of-the art monograph, Maggiore 

(2008, p. 26 my emphasis), for instance, explicitly avers that the first two standard arguments 

are conclusive: “The fact that GWs indeed carry energy and momentum is already clear from 

the discussion of the interaction of GWs with test masses presented above.” 

In addition to their (as I’ll argue: dubious) motivational role, the standard arguments also play 

a suspect role as reasons for thinking that those more sophisticated approaches possess 

physical significance. The belief that they do largely rests on the standard arguments. Serving 

as exemplars in the sense of Kuhn (2012, esp. postscript), they shape our hunches for what 

counts as physical, and not merely formal. But hunches aren’t arguments, of course. 

The alternative, purely dynamical interpretation of the binary problem (laid out in §3) further 

aggravates the issue. On several explanatory virtues, the dynamical interpretation trumps the 

received one. Future work will have to gauge whether the former’s superiority carries over to 

explaining other GW phenomena (e.g. black hole merger scenarios). Even so, the existence of 
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an alternative account subverts the naïve idea that explanatory utility of certain formal 

quantities justifies realist commitment towards them (see e.g. Norton, 2018). Consider, for 

instance quasi-local definitions of gravitational energy. They are useful in computing tidal 

heating (see, e.g. Szabados, 2012, §13.1). But unless the standard arguments already 

persuaded one of the existence of GW energy, utility by itself isn’t enough to vindicate their 

physical significance. 

A proviso is in order. It concerns my prerequisite ontological and ideological commitments. 

My analysis presupposes GR’s standard “minimally geometric” interpretation: gravitational 

effects are re-conceptualised as manifestations of non-Minkowskian inertial structure (see 

e.g. Norton, 2012, pp. 19; Nerlich, 1994, Ch. 7; Nerlich, 2013, esp. Ch. 8, 9). This minimally 

geometric interpretation affords us neutrality on the “relative explanatory priority of 

geometry (the orthodox view [the ‘geometric interpretation’, as ordinarily understood, P.D.]) 

or the dynamical laws (the dynamical/constructivist view)” (Pitts, 2017, p. 13). By the same 

token, I remain non-partisan as to whether inertial structure is ontologically dependent on (or 

even reducible to) matter. (In other words: I steer clear of the debate over the 

dynamical/geometrical approach to spacetime, see, for instance, Brown & Read, 2018.) For 

my purposes, the platitude suffices that GR possesses inertial structure, i.e. distinguished 

states of “natural” motion, characterised in broadly functionalist terms (cf. Knox, 2017b). 

Thereby the intricacies of more specific commitments can be by-passed. At the same time, 

the minimally geometric interpretation captures GR’s distinctive intertwinement of gravity, 

inertia and chronogeometricity. Gravitational energy and the alleged energy of GWs in 

particular sit at the heart of this intertwinement. It’s my hope that the line of thoughts 

developed below will enhance a better understanding of it. This in turn may bear upon a 

principled assessment of other interpretative questions in GR (cf. Lehmkuhl, 2008; Rey, 2013).  

This chapter thus aims at conceptual analysis: given minimal ideological and ontological 

commitments about GR as a fundamental theory, do the textbook arguments for (local) GW 

energy hold water? In particular, I wish to sensitise the reader to the question: to what extent 

do arguments for GWs that employ approximation schemes (e.g. the PPN formalism) go 

beyond those minimal commitments?  
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II.2 Four Routes to Gravitational Wave Energy 

In this section, I revisit and re-evaluate the four canonical arguments found in the astrophysics 

textbook literature for ascribing GWs energy-momentum. They rest on the following 

respective ideas:  

(1) GWs incident on free particles, initially at rest in a lab frame, set them into motion. 

(2) GWs can induce heat in a detector. 

(3) Within perturbation theory, higher-order contributions can be naturally construed as the GWs’ 

energy-momentum.  

(4) The framework of the Noether Theorems, applied to GW theory, leads to energy-momentum 

in a way fully analogous to other field theories. 

None of the arguments, I maintain, is compelling. They either rest on conceptual distinctions 

not available within GR, with its standard ontological and (geometric) ideological 

commitments mentioned above. This the case with (1) and (3). Or – as is the case with (2) and 

(4) – they implicitly hinge on non-trivial assumptions that require (at least) substantive 

additional arguments.  

II.2.1. Kinetic energy of test masses 

The default argument for the energy of a GW turns on the effects of GWs upon test particles, 

otherwise at rest. Their increase in kinetic energy is supposed to have been extracted from 

the GW.  

The argument employs a perturbative treatment of GR, so-called linear GW theory (for details, 

see e.g. Misner, Thorne & Wheeler, 1973, Ch.35; Hobson, Efstathiou & Lasenby, 2006, Ch. 17). 

(The perturbative approach will be studied in full generality in §2.3.) Within linearised theory, 

one assumes that the gravitational field is weak. The spacetime metric, 𝑔𝑎𝑏, then deviates 

only slightly and slowly from a flat Minkowski background 𝜂𝑎𝑏:7  

𝑔𝑎𝑏 = 𝜂𝑎𝑏 + ℎ𝑎𝑏 , where |ℎ𝑎𝑏|, |𝜕ℎ𝑎𝑏|, |𝜕²ℎ𝑎𝑏|, … ≪ 1. 

                                                           
7 For GWs incident on our GW detectors ℎ𝜇𝜈 is typically of order 10−21. For comparison, the absolute values of 

gravitational fields in our solar system are still quite small, typically: |ℎ𝑖𝑗| ≲ 10
−6 (for details, see Misner, Thorne 

& Wheeler, 1973, Ch. 39). 
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All terms beyond linear order in the metric perturbations or their derivatives are discarded. In 

this perturbative order, one can treat ℎ𝑎𝑏 as a symmetric tensor field under global Lorentz 

transformations. (Henceforth in this chapter (II), Greek indices will denote approximately 

Lorentz tensors. Indices thus are also raised/lowered with respect to the Minkowski metric.) 

Linearised theory thus is effectively a special-relativistic theory of gravity for weak fields (cf. 

Ohanian & Ruffini, 2013, Ch. 3,4). (Concomitantly, one introduces Cartesian coordinates as 

inertial coordinate systems. They privilege global Lorentz transformations: only under them 

do objects preserve their invariance.)      

Expanding the general-relativistic tensors in powers of the perturbation ℎ𝜇𝜈 yields (to leading 

order) the corresponding quantities in linearised theory (denoted by the scripted symbols). As 

an example, consider the linearised Einstein tensor:  

𝒢𝜇𝜈 = 𝜕𝜇,𝜈
2 ℎ + □ℎ𝜇𝜈 − 𝜕𝜆,𝜈

2 ℎ𝜇
𝜆 − (□ℎ − 𝜕𝜅,𝜆

2 ℎ𝜅𝜆)𝜂𝜇𝜈 , 

with ℎ ≔ 𝜂𝜇𝜈ℎ𝜇𝜈  and the flat spacetime d’Alembertian □≔ 𝜂𝜇𝜈𝜕𝜇,𝜈
2 . For consistency, the 

energy-momentum tensor 𝑇𝜇𝜈 on the r.h.s. of the Einstein Equations must likewise be of first 

order in the perturbations (𝑇𝜇𝜈 ≈ 𝒯𝜇𝜈).  

Harnessing the gauge freedom for the gravitational field, the linearised Einstein Equations, 

𝒢𝜇𝜈 = −
16𝜋𝐺

𝑐4
𝒯𝜇𝜈, simplify for a particular gauge (the so-called “TT-gauge”) to an 

inhomogeneous wave equation. For the purposes of GWs, we may restrict ourselves to the 

vacuum case (𝒯𝜇𝜈 = 0) with plane wave packets as solutions. They have the form ℎ𝜇𝜈 =

∫𝑑3�⃗� 𝐴𝜇𝜈(�⃗� )𝑒
𝑖𝑘𝜆𝑥

𝜆
, with a generic, wave-vector dependent function 𝐴𝜇𝜈, the so-called 

polarisation tensor.    

One might baulk at imposing the above TT-gauge condition: how to ensure that these waves 

aren’t gauge artefacts? Within the so-called “cosmological perturbation formalism” it can be 

shown that imposing the TT-gauge condition doesn’t curtail the general validity of the 

argument. Only the transverse, traceless degrees of freedom of the metric genuinely (i.e. not 

as an illusory artefact of a coordinate choice) obey a wave-like equation; only they can be said 

to propagate in a physical sense. Hence, one can identify them as radiative (for details see, 

e.g., Flanagan & Hughes, 2005). (The other components satisfy an equation of the Poisson 

type. They represent static degrees of freedom.)  
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Like an electromagnetic wave, a GW possesses two linear (or two circular) polarisations. Their 

respective designations, ⨁ and ⨂, indicate the axes along which a ring of a test particles is 

distorted. The effect that a purely ⨁-polarised GW travelling along the z-axis, ℎ𝑎𝑏
⨁ =

cos 𝑘(𝑐𝑡 − 𝑧) 𝑒𝑎𝑏
⨁  (with the polarisation tensor 𝑒𝑎𝑏

⨁ = 𝑑𝑖𝑎𝑔(0,1, −1,0)) produces in a 

transverse circle of particles is illustrated in Figure 1.  

 

Fig. 1: Deformations of a ring of test particles in the x-y plane. The initial configuration is shown by the open dots. 

𝑛 ∈ ℤ  

For laboratory practices, it’s expedient to adopt the so-called proper detector frame (PDF), a 

Fermi coordinate system along a geodesic. (For details about the PDF and TT frame, see 

Maggiore, 2008, Ch. 1.3.3.)  

In the coordinate system adapted to the PDF, one fixes the origin on a free-fall trajectory, and 

then uses rigid rulers to delineate coordinates. The geometry measured in these coordinates 

is Euclidean. (Such rulers are rigid only in linear order on suitable (material-dependent) length 

scales small relative to the GW wavelength, op.cit., fn 11.) Imagine a laboratory on a (drag-

free) satellite in free-fall in the Earth’s gravitational field. Then, restricting ourselves to a 

sufficiently small region (small, compared to the curvature radius ℛ = |𝑅𝑎𝑏𝑐𝑑|
−1 2⁄ ), we can 

choose coordinates 𝑥𝜆 (viz. Fermi normal coordinates) such that the metric is flat even in the 

presence of a GW,  

𝑑𝑠2 ≈ 𝜂𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 + 𝒪 (

|𝒙|²

ℛ²
) . 8 

Ground-based detectors with characteristic sizes much smaller than the GW’s wave length can 

be effectively described in the PDF. (Its applicability ceases for space-based detectors with 

their usually large spatial extension.) 

                                                           
8 By contrast, for the above purely ⨁-polarised plane GW, the line-element in the TT-gauge takes the form:  

𝑑𝑠2 ≈ 𝑐2𝑑𝑡2 − (1 − h⨁cos 𝑘(𝑐𝑡 − 𝑧))𝑑𝑥2 − (1 + h⨁ cos 𝑘(𝑐𝑡 − 𝑧))𝑑𝑦2 − 𝑑𝑧2. 
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How does an incident GW of amplitude ℎ⨁ affect the above ring of test particles (each 

assumed to be of mass m), when one adopts the PDF? The GW deforms the ring, stretching 

and squeezing it in the x- and y-direction, respectively:  𝛿𝑥(𝑡) =
ℎ⨁

2
sin𝜔𝑡 and 𝛿𝑦(𝑡) =

−
ℎ⨁

2
sin𝜔𝑡. (Fig.1 depicts the deformations by the black arrows.) The particles start moving, 

thereby changing their kinetic energy:  

𝐸𝑘𝑖𝑛 =
𝑚

2
(𝛿�̇�2 + 𝛿�̇�²) =

𝑚

4
ℎ⨁
2 𝜔2 cos²𝜔𝑡. 

Whence this energy gain – the argument from kinetic energy runs – if not from the GW?  

One may object to this argument on two grounds. Firstly, it utilises coordinates that aren’t 

adapted to the inertial frames. Secondly, one may criticise the ambiguity of “kinetic energy” 

in a GR context.  

At the core of the argument from kinetic energy lies its reliance on the PDF. This reference 

frame isn’t physically privileged in linearised GR, however: its adapted Fermi coordinates are 

inertial coordinates only along one particular free-fall trajectory (e.g. one selected particle). 

For all other free-fall particles the PDF’s coordinates aren’t adapted: they aren’t inertial 

coordinates with respect to the effective metric, 𝜂𝜇𝜈 + ℎ𝜇𝜈. (It’s instructive to re-phrase the 

problem from an operationalist perspective. With the PDF’s coordinates being delineated by 

rigid rulers, according to a theorem by Helmholtz, one can’t physically realise a PDF (not even 

in first order!) in spaces of variable curvature (see Mittelstaedt, 1981, Ch. II, §3), including 

those with GWs – unless additional forces are posited ad-hoc to counteract the deformations 

that the curvature inflicts on extended bodies.)  

The so-called TT-frame is no less natural.9 It’s realised by test particles in free-fall. The labels 

of the coordinates adapted to the TT-frame comove with the test particles, i.e. along 

geodesics. (That these coordinates are the ones satisfying the TT-gauge condition introduced 

earlier, follows directly from the geodesic equation.) Hence, for our ring of test particles the 

TT-frame is distinguished globally: its coordinates are adapted to all particles in free-fall 

frames.  

                                                           
9 Kennefick (2007, p. 131) likens the TT-frame to the natural way oceanographers would introduce coordinates 
(in the form of buoys) for orientation on sea. 
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In the TT frame, no particle in the above scenario changes its coordinate position, 
𝑑𝑥𝑎

𝑑𝜏
= 0 

(see, e.g. Hobson, Efstathiou & Lasenby, 2006, Ch. 18.4). The GW doesn’t affect the particles’ 

kinetic energy. This contradicts the previous conclusion from the argument from kinetic 

energy. How to resolve this paradox? 

One might object that the TT-frame isn’t a global inertial frame: not all the laws of physics take 

a particularly simple form in it. (Not all of the Christoffel symbols vanish.) But it’s unclear –not 

least, in light of GR’s general covariance – why this should prevent us from choosing of the 

associated coordinates: shouldn’t physical quantities be independent of the conventional 

choice of coordinates?     

The confusion originates in the notion of kinetic energy: it’s frame-dependent. But the above 

argument imported the Newtonian notion of kinetic energy. Conceptually, this isn’t licit. To 

fathom the real force of the argument from kinetic energy, we must first identify the general-

relativistic counterpart of kinetic energy. Then, we can re-run the argument. 

In Classical Mechanics, kinetic energy plays two distinct roles. On the one hand it’s the residual 

part of the total energy after subtracting the energy contributions from all interactions. On 

the other hand, it’s the (numerical value of) the Lagrangian whose variation yields the 

equation of motion of free particles.10 Both roles are only contingently related. In the 

transition to general-relativistic mechanics, they are no longer played by the same object.  

Which quantity takes over the role of “non-interactional energy"? Consider the energy 𝐸[𝜉] =

𝑔𝑎𝑏𝑝
𝑎𝜉𝑏 of a particle with mass m and the 4-momentum 𝑝𝑎, relative to an observer with the 

4-velocity 𝜉𝑎.11 (For simplicity, let’s ignore all non-gravitational interactions, as well as 

contributions from static gravitational fields.) Subtracting from this energy the particle’s rest 

energy yields the (generally covariant) relativistic kinetic energy: 

𝐸kin: = 𝑝𝑎𝜉
𝑎 −𝑚𝑐2 = 𝑚𝑔𝑎𝑏𝑢

𝑎𝜉𝑏 −𝑚𝑐2 

To evaluate this further, consider the norm of the particle’s 4-velocity,  

𝑐² = 𝑔𝑎𝑏𝑢
𝑎𝑢𝑏 = 𝑐²𝑔00 (

𝑑𝑡

𝑑𝜏
)
2

+ 2𝑐𝑔0𝑖𝑣
𝑖
𝑑𝑡

𝑑𝜏
+ 𝑐²𝑔𝑖𝑗𝑣

𝑖𝑣𝑗 (
𝑑𝑡

𝑑𝜏
)
2

. 

                                                           
10 This is how e.g. Landau & Lifshitz (1976, §4) define kinetic energy. 
11 This mimics the derivation of the mass-energy equivalence in SR, e.g. in Malament (2012, Ch.2.4). 
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Here, 𝜏 denotes its affine parameter and 𝑣𝑗 =
𝑑𝑥𝑗

𝑑𝑡
 the coordinate velocity.  

Recalling that for a GW in TT-gauge passing through the particle, 𝑔0𝑖 = 0, one obtains: 

𝑢0 = 𝑐
𝑑𝑡

𝑑𝜏
=

𝑐

√𝑔00 + 𝑔𝑖𝑗𝑣𝑖𝑣𝑗
. 

For an inertial observer at rest, 𝜉𝑖 = 0, the norm of the observer’s 4-velocity entails that 𝜉0 =

𝑐

√𝑔00
 . Plugging the expressions for 𝑢0 and 𝜉 into the above general-relativistic kinetic energy 

yields:12 

𝐸𝑘𝑖𝑛 = 𝑚𝑐²(√
𝑔00

𝑔00 + 𝑔𝑖𝑗𝑣𝑖𝑣𝑗
− 1). 

Adopt now the TT-frame. In it, the initial particle positions don’t change, 𝑣𝑗 = 0. 

Consequently, the particle doesn’t gain kinetic energy! The argument from kinetic energy is 

short-circuited. 

What about the GR counterpart of the second notion of kinetic energy? The GR Lagrangian 

whose variation entails the equation of motion for a free massive particle takes the same form 

as in SR: 

ℒ0 = √|𝑔𝑎𝑏
𝑑𝑥𝑎

𝑑𝜏

𝑑𝑥𝑏

𝑑𝜏
|. 

When integrated along a worldline between two points, ℒ0 yields the particle’s proper 

distance. While the presence of a GW surely changes the latter, ℒ0’s numerical value remains 

unchanged: viz. c. (ℒ0 transforms like a scalar. To get its numerical value, we can hence 

evaluate it in any arbitrary coordinate systems, including those adapted to the TT frame.) 

Again, the argument from kinetic energy is short-circuited. 

In summary, the argument from kinetic energy has two key flaws. Firstly, it uses a naïve 

Newtonian notion of kinetic energy. Secondly, it bestows on a non-adapted coordinate system 

                                                           
12 It has the limit of the special-relativistic expression for kinetic energy 𝑚𝑐² (

1

√1−𝑣²/𝑐²
− 1) =

1

2
𝑚𝑣² +

3

8
𝑚
𝑣4

𝑐²
+

⋯. 
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a privileged status that prima facie doesn’t seem justified. We remedied the argument by 

identifying the two quantities that take over the respective roles of kinetic energy. Neither 

increased during the passage of a GW.  

An implicit premise of the argument from kinetic energy is energy conservation: if a free 

system’s kinetic energy were changed, energy conservation would imply that the GW had 

imparted energy to the system.  Is this assumption valid? To this we now turn by discussing a 

related phenomenological argument, the Sticky Beads Argument. 

II.2.2 Bondi-Feynman’s Sticky Bead Argument 

In the 1950s, the emission of GWs was still fiercely debated (for the history of this debate, see 

Kennefick, 2007, Ch. 5-7). As a historical matter of fact, the controversy in the physics 

community was settled by a simple, qualitative thought experiment, proposed independently 

by Bondi and Feynman (cf. Feynman, 2002, Foreword). It appears to demonstrate compellingly 

that GWs must carry energy and hence must be real.13  

 

The idea is that a GW can heat up matter. The thermal energy, the Sticky Bead Argument goes, 

is extracted from the GW energy. 

  

 

 

More precisely, consider beads on a stick, serving as a detector. The two beads can “[slide] 

freely (but with a small amount of friction) on a rigid rod. As the wave passes over the rod, 

                                                           
13 It’s worth pointing out that some authors – explicitly e.g. Bunge (2017) – seem to regard energy transport of 
GWs also as a necessary criterion for their existence.  
The view I advocate is that, while I don’t deny that energy transport would constitute a sufficient criterion for 
the reality of GWs, I don’t regard it as a necessary one. GWs in my opinion are real, and they manifest themselves 
in real phenomena, including changes in matter energy-momentum. They don’t involve, however, any energy-
momentum exchange between the GW and matter. GWs exist, but they needn’t carry energy-momentum.  

Fig. 2: 
 
Upper part: sticky beads at rest 
Lower part: The incident GW sets the 
beads in motion along the stick, which 
causes friction. The stick heats up 
(yellow). 
 
 

 
 

https://writescience.files.wordpress.com/2015/04/stickybeads.jpg
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atomic forces hold the length of the rod fixed, but the proper distance between the two beads 

oscillates. Thus, the beads rub against the rod, dissipating heat” (Feynman, Moringo & 

Wagner, 2002, p. xxv-xvi). According to Feynman, the subsequent heating up shows that the 

GW can do work: for conservation of energy to hold, whence should the gain in thermal energy 

stem, if not from the GW? According to the Sticky Bead Argument, GWs must therefore be 

ascribed energy-momentum. 

 

To discern more clearly which assumptions underlying this reasoning are potentially 

problematic, let’s render the argument more quantitative. (I’ll follow the discussion in 

Anderson & Creighton (2012, pp. 65).) Replace the beads on a stick with a simple damped 

spring. Now consider two masses m1 and m2, placed on the x-axis, and connected by a spring 

of spring constant k. When the masses are separated by length L, the spring is at equilibrium. 

Let x measure the displacement of the masses with respect to this equilibrium. If a purely ⊕-

polarised GW hits the system, the induced oscillations obey  
𝑑²𝑥

𝑑𝑡²
+ 2𝛽

𝑑𝑥

𝑑𝑡
+ 𝜔0

2 =

−
1

2
ℎ⊕𝐿𝜔² cos𝜔𝑡 with the characteristic frequency of the oscillator 𝜔0 ≔ √

𝑘

𝜇
, the reduced 

mass of the system 𝜇 ≔
𝑚1𝑚2

𝑚1+𝑚2
 and the damping parameter 𝛽 ≔

𝑏

2𝜇
, where the dissipative 

force is assumed to be 𝐹diss = −𝑏
𝑑𝑥

𝑑𝑡
. The work done by the GW on the oscillator, averaged 

over a cycle of oscillation, can thus be determined to give 〈𝑊𝐺𝑊〉 = −〈𝐸kin + 𝐸pot〉 =

− 〈
𝜇

2
(
𝑑𝑥

𝑑𝑡
) ² +

𝑘

2
𝑥²〉 = 𝛽𝜇𝑥max

2 𝜔² with the resonant amplitude 𝑥max =
1

2

ℎ⨁𝐿𝜔²

√(𝜔0
2−𝜔)²+4𝜔²𝛽²

. This 

dissipated energy manifests itself as thermal energy. The changes in total energy of the 

system, 𝐸kin + 𝐸pot, are counterbalanced by changes in the energy of the GW. One can thus 

determine these changes in the GW’s energy from the dissipation.  

 

The Sticky Bead Argument looks compelling – provided one subscribes to two premises: 

 

(1) General-relativistic correction terms on the internal structure of the stick (in particular its 

binding energy) are negligible (Cooperstock & Tieu, 2012, pp. 85). In our qualitative version of 

the argument this corresponds to assuming that the spring constant (which depends on the 

internal structure of the spring) remains the same before and after the GW detection.  
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(2) Energy conservation holds: an increase of energy is always counterbalanced by a decrease of 

energy elsewhere. This principle was expressly invoked in both versions of the Sticky Bead 

Argument. 

 

No argument, however, was given for either premise. With reason, one may impugn both. 

Cooperstock and Tieu (ibid.), for instance, have – pace Feynman (cited in: Kennefick, 2007, p. 

136) – attacked (1). They claim that no heat transfer occurs, when one properly models the 

stick: “what has been overlooked is that the bar itself has been presumed to be unaffected by 

the gravity waves”. 

 

To-date, a satisfactory response to Cooperstock’s efforts to rebut the Sticky Bead Argument is 

still pending (Kennefick, 2007, p. 254).14 Even so, I won’t discuss the physically adequate 

modelling involved the Sticky Bead Argument. Rather, my focus will be on (2): in GR, energy 

conservation can scarcely be just presumed. On the contrary: The violation of energy-

momentum conservation for non-flat spacetimes is widely countenanced in the GR literature 

(e.g. Eddington, 1923, pp. 135; Schrödinger, 1950, pp. 72; Weinberg, 1972, p. 166; Misner, 

Thorne & Wheeler, 1974, §19.4; Padmanabhan, 2010, p. 213; Hoefer, 2000; Lam, 2011).  

 

More precisely, only highly symmetric spacetimes allow for satisfactory statements of energy 

conservation. If and only if a spacetime possesses a time-like so-called Killing vector 𝜉 

(satisfying ∇(𝑎𝜉𝑏) = 0), is the energy-momentum current 𝑗𝑎[𝜉] ≔ 𝑇𝑏
𝑎𝜉𝑏 in the direction of 𝜉 

locally (differentially) conserved, i.e. possesses no sinks or sources: 

∇𝑎𝑗
𝑎[𝜉] = 0. 

Only when a spacetime has Killing vectors, can the local conservation law be converted into a 

global (integral) one. The energy-momentum enclosed within a space-like hyperplane Σ𝜏 is 

then independent of the foliation of the spacetime, and doesn’t vary with time: 

𝑑

𝑑𝜏
∫ 𝑑³𝑥
Σ𝜏

√|𝑔|𝑗𝑎[𝜉] = 0. 

                                                           
14 One surely ought not to underestimate the subtleties of the interplay between gravity and electromagnetism 
Think, for instance, of the delicate question whether a point charge in free-fall radiates (cf. , for instance, Lyle,-
2008). 
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Nowhere in the Feynman-Bondi Sticky Bead Experiment has the existence of a time-like Killing 

vector been mentioned explicitly. Nor could it have been: a time-like Killing vector essentially 

means that the metric is time-independent. Such a spacetime is static– contrary to the idea of 

a GW as a curvature effect propagating through spacetime.  

It’s possible to relax the requirement of Killing vectors. One can still formulate useful 

conservation laws, if the spacetime has asymptotic Killing vectors – certain suitably defined 

symmetries at infinity (for details, see e.g. Geroch, 2013, Ch. 36-38; Wald, 1984, Ch. 11; 

Jaramillo & Gourgoulhon, 2010). A crucial assumption here is asymptotic flatness: The metric 

must, roughly speaking, fall off sufficiently fast, approximating the Minkowski metric at 

infinity. This imposes substantive restrictions on the space of admissible spacetimes. Their 

justification isn’t unproblematic. I’ll revert to this in §2.4. Suffice it here to mention that, while 

a successful idealisation in many astrophysical contexts, in others asymptotic flatness can no 

longer be assumed. For instance, no perfect fluid model of a rotating star that can be matched 

in the exterior to the (asymptotically flat) Kerr solution is known. In fact, a counterexample of 

a rotating perfect fluid exists, the so-called Wahlquist fluid. More importantly, in no realistic 

scenarios does asymptotic flatness hold any longer: our ΛCDM-universe isn’t asymptotically 

flat – not even approximately. Instead, it’s asymptotically deSitter. Asymptotic flatness should 

thus be viewed as an idealisation in the sense of Norton (2011): within a certain regime, it 

adequately models some aspects of subsystems of our universe by dint of a distinct surrogate 

system which approximately mimics distinctive features of the target system. But with that, 

the predictive and explanatory success of asymptotically flat idealisations no longer warrants 

an unqualified realism about all explanantia involved – in particular, about GW energy. Should 

one wish to uphold a realism about it, one would have to resort to the “selective move” (cf. 

Vickers, 2017): asymptotic flatness would have to be shown to be a “working posit” of (i.e. 

essential for) relativistic astrophysics. But this is questionable. What matters is to obtain an 

approximate solution of the Einstein Equations (and the corresponding general-relativistic 

equations of motions) for a given scenario. Despite its occasional computational convenience, 

there is no reason why asymptotic flatness should be viewed as an indispensable boundary 

condition (especially not, given that our universe just isn’t asymptotically flat). 

Therefore, even if (1) were warranted and we did register an increase in thermal energy of a 

Sticky Bead detector, we wouldn’t be licenced to infer a transfer of energy from the GW, so 
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as to restore energy balance. Rather, it would seem more natural to accept an alternative 

stance: energy conservation simply ceases to hold in GR. The detector would just heat up - 

without there being a causal story about it that would allow us to track the lost energy. Energy 

conservation is just violated (quantifiably!), when a GW hits a detector. (More on this in §3.2.) 

In summary, the cogency of the Sticky Bead Argument derives from premises that, albeit 

uncontroversial in pre-GR physics, are contentious - and plausibly false in GR. 

 

II.2.3. Perturbative approach 

We already encountered linearised GW theory in both the argument from kinetic energy 

(§2.1) and the Sticky Bead Argument (§2.2). There, the metric was expanded around a flat 

background. Perturbation theory generalises this idea by decomposing it into a slowly-varying 

background and a fast-varying perturbation. The latter then is identified as the GW – a ripple 

of spacetime. (For details of what follows below, see Maggiore, 2008, Ch. 1.4; Padmanabhan, 

2010 , Ch. 9.5.) An object then emerges that appears a natural candidate for representing the 

GW’s energy-momentum. 

For simplicity, we restrict ourselves to vacuum solutions of the Einstein Equations, 𝐺𝑎𝑏 = 0. 

Let there exist a suitable length or time scale of the variation. This enables us to decompose 

the metric into a background and small fluctuation components. 

  

Applying the standard scheme for perturbation theory to the metric (with the formal book-

keeping parameter 𝜖), 

𝑔𝑎𝑏 = 𝑔𝑎𝑏
(0)
+ 𝜖𝑔𝑎𝑏

(1)
+ 𝜖2𝑔𝑎𝑏

(2)
, 

the Einstein tensor can be expanded up to 𝒪(𝜖²) as 

Fig. 3: 

Characteristic length scales 𝜆 of the GW and 

of the background curvature L, respectively 

 

λ 

Background with 

curvature radius L 

gravitational wave 
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𝐺𝑎𝑏 = 𝐺𝑎𝑏
(0)
[𝑔𝑎𝑏
(0)
] + 𝜖𝐺𝑎𝑏

(1)
[𝑔𝑎𝑏
(0)
, 𝑔𝑎𝑏
(1)
] + 𝜖² (𝐺𝑎𝑏

(1)
[𝑔𝑎𝑏
(0)
, 𝑔𝑎𝑏
(2)
] + 𝐺𝑎𝑏

(2)
[𝑔𝑎𝑏
(0)
, 𝑔𝑎𝑏
(1)
]). 

Here, the superscript “(0)“ denotes the unperturbed (0th-order) quantities and, 

correspondingly, “(1)“ the 1st-order perturbations, etc.  The dependence of the 1st-order 

Einstein tensor, 𝐺𝑎𝑏
(1)
[𝑔𝑎𝑏
(0)
, 𝑔𝑎𝑏
(1)
] , on the arguments in brackets signifies that it’s built from 0th 

and 1st-order terms of the metric. Terms of each order are assumed to vanish separately. 

In the expansion of the Einstein tensor, the first two terms describe the unperturbed 

background geometry, and the evolution of the perturbations on the background (i.e. the 

GWs) respectively. Of principal interest for us is the third term: It describes how the 2nd order 

perturbations are related to the background and 1st-order perturbations. Recast as  

𝐺𝑎𝑏
(1)
[𝑔𝑎𝑏
(0)
; 𝑔𝑎𝑏
(2)
] =

8𝜋𝐺

𝑐4
𝑡𝑎𝑏
(eff)
, 

with the effective GW energy-momentum tensor 𝑡𝑎𝑏
(eff)

= −
𝑐4

8𝜋𝐺
𝐺𝑎𝑏
(2)
[𝑔𝑎𝑏
(0)
; 𝑔𝑎𝑏
(1)
] on the r.h.s.,  

it lends itself to an intuitive interpretation: the 2nd-order perturbations of the metric are 

sourced by the effective GW energy-momentum. This reflects, one is tempted to think, the 

back-reaction of the gravitational field upon itself.15 That is: on this view, gravitational energy 

qua energy contributes to the generation of its own field; “gravity itself gravitates.”  

A blemish taints 𝑡𝑎𝑏
(eff)

, though: the effective gravitational energy-stress pseudo-tensor isn’t 

invariant under the local gauge transformations of the type ℎ𝜇𝜈 → ℎ′𝜇𝜈 = ℎ𝜇𝜈 − 𝜕(𝜇𝜉𝜈), for an 

arbitrary 𝜉𝑎. (For simplicity, assume the spacetime background to be flat.) This lack of gauge-

invariance can be cured (see e.g. Misner, Thorne & Wheeler, 1973, §35.15) by averaging over 

a 4-volume Δ𝒱 of several wave lengths of the GW (but still smaller than the length scale of 

variation of the background): 

𝑇𝑎𝑏
(GW): = 〈𝑡𝑎𝑏

(eff)〉 =
1

|Δ𝒱|
∫ 𝑑4𝑥
Δ𝒱

√|𝑔(0)|𝑡𝑎𝑏
(eff). 

(Smoothing out 𝑡𝑎𝑏
(eff) doesn’t affect the actual physics: perturbations can only be defined with 

respect to the typical length/time scales of the background, anyway.) This averaged GW 

                                                           
15 For the sake of the argument, I grant that the gravitational field should indeed be identified with the metric – 
thereby glossing over a prolonged debate (see Lehmkuhl, 2008).   
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energy-momentum then is gauge-invariant. (The changes of 𝑡𝑎𝑏
(eff)

 resulting from gauge 

transformations take the form of total divergences. They are eliminated by integration.)  

𝑇𝑎𝑏
(GW)

 has several properties that at first blush invite its interpretation as a GW’s energy-

momentum. 1. It transforms covariantly w.r.t. tensor transformations of the background 

metric 𝑔(0). (Indices therefore are also raised/lowered with respect to 𝑔(0).) 2. By 

construction, it’s symmetric (a requirement for defining angular momentum). 3. It obeys a 

generally covariant conservation law, ∇(0)𝑏(𝑇𝑎𝑏 + 𝑇𝑎𝑏
(GW)

) = 0, where the covariant 

derivative is defined with respect to the background metric, ∇(0)𝑏𝑔𝑎𝑏
(0)
= 0. (N.B.: The 

covariant divergence of the matter energy-momentum tensor vanishes separately with 

respect to the connection compatible with the full spacetime metric simpliciter, i.e. the 

background plus the perturbations: ∇𝑏𝑇𝑎𝑏 = 0.) 4. Like other energy-momentum tensors from 

classical field theories, it’s quadratic in the dynamical field variables (here: the perturbations 

𝑔𝑎𝑏
(1)

).  

It appears to originate in the non-linearity of the Einstein Equations – in accordance with the 

slogan that “gravity gravitates”: all forms of energy (including gravitational energy itself) act 

as a source for the gravitational field. 

An equivalent re-formulation of the perturbative approach in terms of a variational principle 

(“Isaacson’s approach”, Schutz & Ricci, 2010, sect. 4.2) is instructive. The idea is to expand the 

action 𝑆[𝑔𝑎𝑏 + ℎ𝑎𝑏] = ∫𝑑
4𝑥 √|𝑔[𝑔𝑎𝑏 + ℎ𝑎𝑏]|𝑅[𝑔𝑎𝑏 + ℎ𝑎𝑏] with respect to the 

perturbations ℎ𝑎𝑏 around the background 𝑔𝑎𝑏, such that: 

𝑆[𝑔𝑎𝑏 + ℎ𝑎𝑏] = 𝑆[𝑔𝑎𝑏] + ∫𝑑𝑥
4ℎ𝑎𝑏

𝛿(√|𝑔|𝑅)

𝛿𝑔𝑎𝑏

+
1

2
∫𝑑𝑥4 (

𝜕2(√|𝑔|𝑅)

𝜕𝑔𝑎𝑏𝜕𝑔𝑐𝑑
ℎ𝑎𝑏ℎ𝑐𝑑 + 2

𝜕2(√|𝑔|𝑅)

𝜕𝑔𝑎𝑏𝜕(𝜕𝑒𝑔𝑐𝑑)
ℎ𝑎𝑏𝜕𝑒ℎ𝑐𝑑

+
𝜕2(√|𝑔|𝑅)

𝜕(𝜕𝑒𝑔𝑐𝑑)𝜕(𝜕𝑓𝑔𝑐𝑑)
𝜕𝑒ℎ𝑐𝑑𝜕𝑓ℎ𝑐𝑑 + 2

𝜕2(√|𝑔|𝑅)

𝜕𝑔𝑎𝑏𝜕(𝜕𝑒,𝑓𝑔𝑐𝑑)
ℎ𝑎𝑏𝜕𝑒,𝑓ℎ𝑐𝑑) + 𝒪(ℎ

3). 

The term in brackets in the last integral can be regarded as (proportional to) the GW-

Lagrangian, 32𝜋𝐿(𝐺𝑊). It’s a function of the background metric and its perturbation, 𝐿(𝐺𝑊) =

𝐿(𝐺𝑊)(𝑔𝑎𝑏 , ℎ𝑎𝑏).  
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Via this GW-Lagrangian, one can define an effective energy-stress tensor associated with the 

GWs as a variational derivative with respect to the background metric:  

𝑡(𝐺𝑊)
𝑎𝑏 =

2

√|𝑔|

𝛿

𝛿𝑔𝑎𝑏
(√|𝑔|𝐿(𝐺𝑊)). 

Averaging as before yields the same effective energy-momentum as the previous expression: 

𝑇(𝐺𝑊)
𝑎𝑏 = 〈𝑡(𝐺𝑊)

𝑎𝑏 〉. 

Does this supply a convincing proposal for GW energy? Two reasons discourage a positive 

answer. The first turns on the fact that the perturbative approach relies on stipulations 

unwarranted within GR’s conceptual framework. The second consists in the limited utility of 

perturbatively defined GW energy. 

The perturbative approach explicitly presupposes a background-perturbation split, both in the 

construction of the energy-momentum from perturbative orders, and in the averaging 

procedure to remedy gauge-dependence. Such a split is occasionally justified from a pragmatic 

point of view, say for primordial GWs on an FLRW background. In such cases, one deals with 

discriminable scales, λ and L, over which the background geometry and the perturbation vary, 

𝜆 ≪ 𝐿.  

As Padmanabhan (2010, p. 420; cf. also Padmanabhan, 2004) insists, however, a 

straightforward comparison of the orders of magnitude discloses that “one cannot introduce 

the concept of a gravitational wave of arbitrarily large amplitude but varying at a length scale 

that is sufficiently small compared with the background scale of variation and develop a 

systematic perturbation theory”. For instance, at early times during cosmic inflation, the 

wavelength of GWs is smaller than the Hubble scale ("inside the horizon"). As inflation 

proceeds, the GW's wavelength redshifts and eventually is “ouside of the horizon”, i.e.  

becomes larger than the Hubble scale  (cf. Flanagan & Hughes, 2005, Sect. 5.2). A GW thus 

cannot be fundamentally characterised as such a “ripple on a background”. Ultimately, there’s 

only one metric, defying any clear-cut severing of “perturbations” from a “background”. 

Rather, the picture of a ripple on a background is an approximate distinction, applicable only 

in certain regimes.  

One should view the perturbative approach as describing the transition from a fundamental 

to a coarse-grained description (cf. Maggiore, 2008, Ch. 1.4.2). It’s an effective field theory – 
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a tool convenient for approximations in a particular regime16 up to a certain degree of 

accuracy; it’s not a fundamental account.17 (On a fundamental level, a GW is characterised via 

the Weyl tensor (for details, see e.g. Weinberg, 1972, pp. 145; Padmanabhan, 2010, pp. 263; 

pp. 403), i.e. the trace-free part of the Riemann tensor: 

𝐶𝑎𝑏𝑐𝑑 = 𝑅𝑎𝑏𝑐𝑑 − 𝑔𝑎[𝑐𝑅𝑑𝑏] + 𝑔𝑏[𝑐𝑅𝑑]𝑎 +
1

3
𝑅𝑔𝑎[𝑐𝑔𝑑]𝑏 . 

It encodes the purely gravitational degrees of freedom. It’s constrained, but not determined 

by the matter distribution.) 

This non-fundamentality needn’t disconcert us. Applications of physical theories (almost) 

invariably operate on a non-fundamental conceptual level. In particular, effective field 

theories, including those with cut-offs, are omnipresent in physics (see, e.g., Gripaios, 2014). 

However, the present chapter is concerned with whether the standard arguments show that 

we should be committed to GW energy on a fundamental level. (This isn’t to say that 

something interesting can – and should – be said about the emergent ontology of GW theory 

as an effective field theory, cf. Crowther, 2016; Read, 2017 for gravitational energy in GR as 

an emergent concept; Wayne, 2017 for GW theory as an effective field theory.)  

So, what conclusions can be drawn regarding the perturbatively defined GW energy? Two 

difficulties obstruct a straightforward realism about it.  

One arises, when 𝑇𝑎𝑏
(eff)

 (or 𝑡𝑎𝑏
(eff)

) is invoked to explain how the 2nd order perturbation 

propagates on the background. This suggests that the vacuum Einstein Equations in first and 

second order suffice to explain the behaviour of the background metric, whereas the 

behaviour of the perturbations calls for an explanans: it requires the GW energy-momentum 

as a source. One thus imputes to the perturbations a different status than the background.  

From a fundamental level of description, this explanatory asymmetry is indefensible: no 

perturbative order of the metric is privileged. Interpreting 𝑇𝑎𝑏
(eff)

as a cause is tantamount to 

demanding an explanation for the non-linear terms of GR – an explanation that the linear 

                                                           
16 The perturbative expansion in the so-called near-zone must be matched to a different kind of expansion in the 
so-called far-zone (“asymptotic matching”), cf. Maggiore, 2008, Ch. 5.1.6 This way boundary conditions at infinity 
can be incorporated, and divergences in the expansion can be avoided. 
17 The averaging over several wavelengths we prescribed above in order to overcome the gauge-dependence of 
the effective GW energy-momentum is in fact a special case of renormalisation group transformations, familiar 
from effective field theories to describe transitions from different levels of description (cf. Peskin & Schroeder,-
1995, Ch. 12).  
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terms don’t need. But why assume that? Doesn’t this asymmetry just ignore the fact the GR is 

non-linear tout court (Aldrovandi, Pereira & Vu, 2007)? Why privilege the linear (1st order) 

parts of an essentially nonlinear theory?18  

Another problem with the interpretation of the perturbative GW energy-momentum becomes 

evident in Isaacon’s variational approach. For the correct field equations both the background 

metric and the perturbation must be treated as independent variables. Furthermore, the 

effective GW energy-momentum is defined variationally with respect to the background 

metric. This is exactly analogous to the definition the matter energy-momentum tensor, 𝑇𝑎𝑏 =

−
2

√|𝑔|

𝛿

𝛿𝑔𝑎𝑏
(√|𝑔|𝐿) with the matter Lagrangian L. The perturbation is thus effectively treated 

as a matter field. It’s assigned its own energy-momentum tensor. Contrariwise, the 

background metric retains its spacetime interpretation. (Schutz & Ricci (2010, p. 41) are 

explicit about this.) But such an ontological re-categorisation of a (perturbative order of the) 

spacetime metric to an independent matter field looks like a momentous shift. It inaugurates 

an ontological difference that the perturbative approach per se doesn’t sanction.  

One might counter that this argument rests on a false dichotomy between spacetime and 

matter. Why shouldn’t certain matter fields play the spacetime role (cf., for instance, Brown, 

2007; Pitts, 2017; Knox, 2017b)? If they do, there is no reason why different matter fields 

shouldn’t also play this role on different scales. I’m sympathetic to this line of reasoning. I 

surely don’t deny that it’s an option. But it mandates significantly more, independent 

arguments – well beyond what textbooks offer as arguments for GW energy.   

Before moving on to practical shortcomings of the perturbative approach, I’d like to allay 

potential discomfort about the lack of general-covariance in the perturbative approach. In 

conversation, many physicists conceded a perceived oddity of the effective energy-

momentum: it transforms tensorially only under transformations that leave the background 

metric invariant. It doesn’t transform tensorially under more general transformations. GR 

simpliciter gainsays such a preferred status of a background. This “restricted” covariance is 

innocuous, though: not all sectors of GR’s solutions must display the same transformation 

                                                           
18 One should resist the temptation to compare GR with the linear Maxwell theory. A more illuminating analogy 
comes from comparison with the likewise genuinely non-linear vectorial Yang-Mills-type theories (cf. Deser, 
1970). It’s noteworthy that in such Yang-Mills theories energy is localisable: thus, the problems with localising 
gravitational energy in GR does not originate in its nonlinearity per se, as is sometimes claimed.  
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symmetries (cf. Belot, 2011, esp. pp. 2870). This is the case here. The boundary conditions for 

gravitationally radiating systems impose special symmetries on the resulting solutions. These 

symmetries here are reflected in the special status of the background metric.  

I now conclude this look at the perturbative approach with two of its practical shortcomings. 

They considerably lessen its value for any applications of GW energy (Poisson & Will, 2014, 

Ch. 12.2.5). Firstly, the perturbative approach affords no notion of a “gravitational energy of 

the system”. (The quotation marks here flag that I refrain from any ontological commitment 

to the formal-mathematical terms, thus labelled. This neutrality permits me to acknowledge 

that these terms appear in calculations, without having to promote them to elements of our 

ontology.19) Consequently, the perturbative approach falls short of paradigmatic applications 

of GW astrophysics, e.g. binary systems, whose “gravitational energy” decreases, when 

emitting GWs. In the same vein, a perturbatively defined GW energy is also too crude to 

deliver the “flux of angular momentum”. The latter is important for the correct description of 

millisecond pulsars. Their rotation rate increases due to a transfer of “angular momentum” 

from the accretion disk surrounding the pulsar (Poisson & Will, 2014, Ch. 12.2.4). As the 

primary raison d’être of defining GW energy consists in its astrophysical utility, the 

perturbative road thus seems like a blind alley. 

In summary, we pointed out three difficulties for accommodating perturbatively defined GW 

energy within GR’s fundamental ontology and ideology. Firstly, as a source term for the 

propagation of the metric perturbations, it introduces an explanatory asymmetry between 

linear and nonlinear terms. This isn’t licenced for GR as an essentially nonlinear theory. 

Secondly, it creates an ontological (spacetime vs. matter) asymmetry amongst perturbative 

orders. On some (prima facie plausible) views about spacetime, this asymmetry may seem 

drastic. Thirdly, the perturbative approach as a whole is unsuitable for astrophysical 

applications. This renders a perturbatively defined GW energy-momentum a questionable 

starting point for both physics and conceptual analysis. 

 

                                                           
19 This situation is analogous to the quantum potential in Bohmian Mechanics. It’s controversial that one should 
include it as part of the physical ontology – rather than, say, a manifestation of the “Aristotelian” inertial 
structure of Bohmian Mechanics (cf. Goldstein, 2017, sect. 5).  
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II.2.4 The Noetherian perspective 

The most systematic approach to GW energy-momentum is via (a suitable generalisation of) 

Noether’s Theorem. It treats GR’s metric like a garden-variety classical field. Subsequently, I’ll 

examine whether the Noetherian perspective by itself vindicates the ascription of energy to 

GWs. The discussion commences with a more general consideration of Noether’s Theorem in 

GR. This enables us to grasp both the specific problems of GW energy, as well as those of 

gravitational energy more generally. 

From a gauge-theoretic point of view (broadly construed), one of GR’s characteristics is its 

general covariance: it’s invariant under general diffeomorphisms. General covariance as a 

local symmetry of the Einstein-Hilbert action, ∫𝑑4𝑥 √|𝑔|𝑅, allows for an application of 

Noether’s 2nd Theorem. The latter links local gauge symmetries and conserved quantities (for 

technical and conceptual details, see Maggiore, 2008, Ch. 2; Brading & Brown, 2000; Brown & 

Brading, 2002).  

For applications in GR, two reasons commend a less known generalisation of Noether’s 

Theorem: gauge-dependence and the restrictive nature of some assumptions underlying 

Noether Theorem, respectively.  

Firstly, the results of Noether’s Theorem are gauge-dependent. Laxness regarding gauge-

dependence wreaked considerable havoc in the history of GW theory (Kennefick, 2007, Ch. 

4,5). In that light, it’s imperative to be particularly circumspect in ensuring the gauge-

invariance of any result. A related drawback of Noether’s Theorem is that it only exploits the 

information encoded in the vanishing of the interior contributions of the varied action. This 

seems unduly restrictive: why assume a priori that GR’s metric suitably “flattens out” at 

infinity so that contributions to the boundary can be discarded without impunity? The Klein-

Utiyama Boundary Theorem addresses both issues (cf. Brading & Brown, 2000); Ohanian, 

2013, Appendix 1 recapitulates the technical details for the GR case).    

Consider the action 𝑆[𝜓𝑖] = ∫ 𝑑
4𝑥𝔏 (𝜓𝑖, 𝜕𝜓𝑖 , 𝑥) of the generic fields 𝜓𝑖. It’s assumed to be 

invariant (up to a surface term) under an infinite-dimensional Lie group 𝐺∞,𝜌 of 

transformations which smoothly depend on 𝜚 functions 𝑝𝛼(𝑥
𝑎) and their derivatives20 

                                                           
20 For simplicity, a restriction is made to first derivatives.  
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𝜕𝛽𝑝𝛼(𝑥
𝑎), and which give rise to the variation of the dynamical fields 𝜓𝑖  (of generic tensorial 

type), 𝛿𝜓𝑖 = ∑ (𝑎𝛼𝑖Δ𝑝𝛼 + 𝑏𝛼𝑖
𝑐 𝜕𝑐Δ𝑝𝛼)𝛼 . Here, 𝑎𝛼𝑖 and 𝑏𝛼𝑖

𝜇
 are coefficient functions that 

depend on 𝑥𝑎 , 𝜓𝑖  and 𝜕𝑐𝜓𝑖. (The Δ𝑝𝛼′s indicate that we are taking infinitesimal pαs.) 

Then, according to the Klein-Utiyama Theorem, there exist three sets of 𝜚 relationships: 

• ∑ 𝑎𝛼𝑖
𝛿𝔏

𝛿𝜓𝑖
≡ −∑ 𝜕𝑐 (𝑎𝛼𝑖

𝜕𝔏

𝜕(𝜕𝑐𝜓𝑖)
)𝑖𝑖  

• ∑ 𝑏𝛼𝑖
𝜇 𝛿𝔏

𝛿𝜓𝑖
≡ −∑ (𝑎𝛼𝑖

𝜕𝔏

𝜕(𝜕𝜇𝜓𝑖)
+ 𝜕𝜈 (𝑏𝛼𝑖

𝜇 𝜕𝔏

𝜕(𝜕𝜈𝜓𝑖)
))𝑖𝑖  

• ∑ (𝑏𝛼𝑖
𝜐 𝜕𝔏

𝜕(𝜕𝜇𝜓𝑖)
+ 𝑏𝛼𝑖

𝜇 𝜕𝔏

𝜕(𝜕𝜈𝜓𝑖)
) ≡ 0𝑖 . 

 

Here 
𝛿𝔏

𝛿𝜓𝑖
 denotes the variational derivatives with respect to 𝜓𝑖, i.e. the familiar Euler-Lagrange 

expressions for 𝜓𝑖. Germane to our purposes is the first identity. After some rearranging, one 

can infer from it that the Noetherian 4-current  

𝑗𝑘
𝜇
≔ −∑ {

𝜕𝔏

𝜕(𝜕𝜇𝜓𝑖)

𝜕(𝛿0𝜓𝑖)

𝜕(∆𝑝𝑘)
+ +𝔏

𝜕(𝛿𝑥𝜇)

𝜕(∆𝑝𝑘)
−
𝜕(∆Λ𝜇)

𝜕(∆𝑝𝑘)
}

𝑖
, 

(with the terms Λ𝜇, arising, when the action isn’t strictly invariant, such as in the case of GR) 

can be brought into the following form: 

𝑗𝑘
𝜇
= 𝑏𝑘𝑖

𝜇
(
𝜕𝔏

𝜕𝜓𝑖
− 𝜕𝜈

𝜕𝔏

𝜕(𝜕𝜇𝜓𝑖)
) + 𝜕𝜈𝑈𝑘

[𝜇𝜈]
. 

The last term, 𝑈𝑘
[𝜇𝜈]
, is a so-called superpotential, antisymmetric in its upper indices (for 

details see Trautmann, 1962). 

Let’s now apply the Klein-Utiyama Theorem to GR with the truncated (“ΓΓ”) Lagrangian   

ℒ̅ = 2𝑔𝑎𝑏Γ𝑎[𝑏
𝑑 Γ𝑐]𝑑

𝑐 . 

(It’s dynamically equivalent to the Einstein-Hilbert Lagrangian, see, e.g. Hobson, Efstathiou & 

Lasenby, 2006, Ch. 19.19.) 

The last two identities of the Klein-Utiyama Theorem have some interesting implications for 

the form of the superpotential, as well as for the mutual constraints of the Einstein Equations 
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and the matter field equations on each other, respectively (Ohanian, 2013, Appendix 1; Brown 

& Brading, 2002, sect. IV).  

The first identity of the Klein-Utiyama Theorem, together with the Einstein Equation, entails: 

√|𝑔|(𝑇𝑎
𝑏 + 𝑡𝑎

 𝑏) = 𝜕𝑐𝔚𝑎
[𝑏𝑐]
. 

Here 𝑡𝑎
 𝑏: =

1

√|𝑔|
(−ℒ̅𝛿𝑎

𝑏 +
𝜕ℒ̅

𝜕(𝜕𝑏𝑔𝑑𝑒)
𝜕𝑎𝑔𝑑𝑒) denotes the so-called Einstein pseudotensor (see 

Dirac, 1975, Ch. 32 for a handier form) and a superpotential 𝔚𝑎
[𝑏𝑐]
: = 𝑔𝑎𝑒𝜕𝑑(|𝑔|𝑔

𝑒[𝑏𝑔𝑐]𝑑), 

again antisymmetric in its upper indices. 

The Einstein pseudotensor corresponds to canonical energy-momentum associated with 𝑔𝑎𝑏, 

as one would expect it from other field theories. The metric 𝑔𝑎𝑏 can be regarded (e.g. by 

Maggiore (2008, Ch. 2.1)) as a rank-2 matter field on Minkowski space. This suggests that 

𝔗𝑎
𝑏 ≔ 𝑇𝑎

𝑏 + 𝑡𝑎
 𝑏 should be interpreted as the “total” (matter plus gravitational) energy-

momentum.  

Thanks to the superpotential’s antisymmetry in its upper indices, it obeys a continuity 

equation: 

𝜕𝑏(√|𝑔|𝔗𝑎
𝑏) = 𝜕𝑏,𝑐𝔚𝑎

[𝑏𝑐]
≡ 0. 

Albeit not a tensor equation, the continuity equation holds in every coordinate system 

(Schrödinger, 1950, p. 104). It’s tempting to construe it as a conservation principle, reflecting 

the absence of sinks and sources of the total energy-momentum flux. 

Let’s for the moment ignore potential technical problems, related to the convergence of 

integrals. Furthermore, suppose that we can interpret the Einstein pseudotensor as canonical 

energy-momentum of the metric. (We’ll regard the latter as representing the gravitational 

field.) Then, by culling from the pseudotensor those degrees of freedom associated with GWs, 

we get the GW energy-momentum: select from canonical energy-momentum associated with 

the whole spacetime (“total gravitational energy-momentum”) those “radiative” 

contributions identifiable with the GW. This is the standard Noetherian approach to GW 

energy (see Brading, 2005 for historical details). 

Drawing on the discussion in §2.3, one immediately spots a problem of this approach: It relies 

on a clear separation of degrees of freedom associated with the GW, and those of the 
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background. Such a separation isn’t possible for arbitrary perturbative orders (or even at all 

for most realistic spacetimes). 

Yet a graver issue besets the Noetherian GW energy. It generalises to the question of the 

status of gravitational energy in GR: should we interpret the resulting pseudotensor 

realistically? The question encompasses two aspects. One concerns problems of the 

interpretation of the Noetherian energy-momentum 4-currents (“local energy-momentum”); 

the other concerns the question whether these 4-currents give rise to well-defined “global” 

(integral) quantities.  

Let’s first focus on local gravitational energy-momentum. Three major difficulties encumber a 

straightforward realist interpretation of the Einstein pseudotensor as gravitational energy 

(see Dürr, forth. for a detailed analysis, i.e. Ch. III of this thesis): 1. Gauge-dependence, 2. 

Index-nonsymmetry, and 3. Ambiguity. 

1. As a pseudotensor, the Einstein pseudotensor doesn’t transform tensorially under arbitrary 

coordinate transformations. It’s invariant only under linear (affine) transformations. However, 

in spacetimes other than Minkowski’s, linear transformations are no longer privileged. (In 

terms of a Kleinian approach to geometry (for details, see Wallace, 2016): in general, the 

pseudotensors’ invariance group won’t coincide with the symmetry group of the spacetime on 

which they live.)   

The object denoted by the pseudotensor thus depends on the conventional preference of 

certain coordinate system – in contrast to the invariance one would naturally demand of a 

physical quantity (cf. Vollmer, 2010). 

Weyl (1923, p, 273) neatly summarises the dilemma: “Indeed all the [pseudotensor 

components] can, through a suitable choice of a coordinate system, be made to vanish; [...] on 

the other hand one obtains [pseudotensor components] that are different from zero in a 

‘Euclidean’, completely gravity-free world by using a curvilinear coordinate system, where it 

seems pointless to speak of gravitational energy.” 

2. Einstein’s pseudotensor isn’t symmetric in its indices. This compromises its physical 

suitability for defining angular momentum.  

One can take care of the asymmetry by dint of the Belinfante-Rosenfeld technique. But the 

latter favours the Poincaré group in a manner prima facie not justified within GR (Leclerc, 

2006).  
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3. Ambiguity: The canonical energy-momentum 4-current above is defined only up to a choice 

of a superpotential. In itself, none is less apt than other choices. The pseudotensor thus is 

vastly underdetermined: In fact, (uncountably) infinitely many choices are possible (Bergmann, 

1958; Komar, 1959). Different pseudotensors are known that yield different energy-

momentum distributions for certain spacetimes (Virbahdra, 1990). (This doesn’t seem to be 

the rule, though.) 

Vis-à-vis such difficulties, should one perhaps follow Weyl’s suggestion that a realist 

interpretation of the Klein-Utiyama-Noetherian results be reserved only for the 

global/integral quantities, associated with the 4-currents?21  

For the integrals to be well-defined, however, the metric must satisfy certain conditions at 

infinity (“asymptotic flatness”). How to formulate the required flattening-out in a coordinate-

independent way? This leads to so-called conformal techniques (e.g. Geroch, 2013, Ch. 35-38; 

for details, see Frauendiener, 2004). The rather involved details shan’t detain us here. Roughly 

speaking, one augments the spacetime (ℳ, 𝑔) by boundary points,”∞“, corresponding to 

idealised end-points at infinity along time- or null-like geodesics. By a suitable choice of a 

smooth scale factor, Ω:ℳ → ℝ+, one can shrink lengths (encoded in the “conformal” metric 

�̃�: = Ωg) such that infinity can be represented as points on the compact augmented manifold, 

(ℳ ∪∞, �̃�). At infinity, Ω is assumed to vanish. Asymptotic flatness in this pictures then is 

essentially defined as the requirement that in a neighbourhood of infinity the Ricci tensor �̃�𝑎𝑏 

associated with �̃� vanish.  

Asymptotic flatness elicits numerous delicate questions: how restrictive are the constraints it 

imposes on the space of formally admissible spacetimes? That is: How typical are 

asymptotically flat solutions in the space of all solutions? How physically robust is asymptotic 

flatness? That is: How stable is an asymptotically flat spacetime against perturbations in the 

boundary conditions? To what extent are realistic spacetimes asymptotically flat? How are the 

different notions of asymptotic flatness at space-like, null or time-like infinity related? How 

formally plausible is the above Noetherian gravitational energy-momentum definable on 

                                                           
21 Weyl (1923, p. 273; cf. Schrödinger, 1950, p. 100) writes: “Still, from a physical point of view, it seems 
meaningless to introduce the [pseudotensor] as energy components of the gravitational field, for they form 
neither a tensor nor are they symmetric […]. Even if the differential relations [i.e. the pseudotensor-based 
continuity equation, P.D.] are without any real physical meaning, they do give rise to an invariant statement of 
conservation via integrating over an isolated system.”  
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asymptotically flat spacetimes? How is it related to alternative proposals, such as the Bondi 

mass?  

These questions lie beyond the present chapter’s ambit. For our purposes, the first three are 

primarily relevant. It’s clear that asymptotically flat spacetimes are exceptional amongst 

formally possible ones: any deviation from Ricci-flatness at infinity mars asymptotic flatness. 

For some objects, one can approximate their ambient spacetime to a good approximation as 

asymptotically flat. (Recall the caveats from §2.2, though.) But – at the very least – on 

cosmological scales, the asymptotically flat approximation of realistic, astrophysical objects 

breaks down: within a certain regime, one can – for reasons of computational convenience –

at best embed a (relevant) patch of their physical spacetime into an asymptotically flat one. 

As argued in §2.2, it’s an idealisation in Norton’s sense: the embedding spacetime is an 

unrealistic, surrogate spacetime. Consequently, realism about notions of gravitational energy 

based on asymptotic flatness isn’t straightforward.  

In conclusion, the Noether Theorem provides a systematic route to “gravitational” and “GW 

energy”. (The apostrophes again flag that the terms refer to the mathematical objects, 

conventionally thus labelled.) The result is both a local and global notion. The former is 

unconvincing. Global notions, on the other hand, prompt tricky questions. Some answers can 

be given, e.g. regarding the positivity of “gravitational energy” or the “energy-momentum flux 

of GWs” (for this impressive, beautiful theorem, see e.g. Straumann, 2013, Ch. 3.7, 6.1). Even 

so, the conditions that their definition requires are idealisations in Norton’s sense. This casts 

into doubt a naive realism about them. 

Given this controversial status of gravitational and GW energy, it seems desirable to eschew 

reference to it, altogether. I demonstrate that this is feasible for the explanation of the orbital 

decay of double pulsars.  

II.3 Aren’t binary systems evidence for GW energy? 

In this section, I analyse and critique the received account of binary systems.  I proffer an 

alternative explanation exclusively in terms of the general-relativistic equations of motion and 

the Einstein Equations.  It’s argued to be superior to the standard account.  

 



40 
 

III.3.1 The standard view 

On the standard interpretation of the binary problem, one explains the orbital decay via the 

system’s total energy being carried away by the emitted GWs. 

More precisely, the standard interpretation, as presented in the astrophysics literature (e.g. 

Hobson, Efstathiou & Lasenby, 2006, Ch. 18.8; Poisson & Will, Ch. 6-12), starts from an energy 

balance of the (quasi-symbolic) form �̇� = −𝐿. The energy-flux on the r.h.s. -the energy-

momentum radiated away- compensates the change in the system’s total energy-momentum 

on the l.h.s. 

Such an energy balance is provided by a realist interpretation of the continuity equation for 

total energy-momentum, based on the energy-momentum tensor of matter and a 

pseudotensor, as encountered in §2.4. A standard choice in astrophysics is Landau and 

Lifshitz’s index-symmetric pseudotensor (for details, see Landau & Lifshitz, 1971, §101). It 

satisfies the continuity equation 

𝜕𝑏 (|𝑔|(𝑇
𝑎𝑏 + 𝑡(𝐿𝐿)

𝑎𝑏 )) = 0. 

Integration over a 3-region 𝒱3 yields the corresponding total energy-momentum 𝑃𝑎 =

(𝐸 𝑐⁄ , 𝑃𝑖), contained in this volume: 

𝑃𝑎 =
1

𝑐
∫ 𝑑³𝑥|𝑔|(𝑇𝑎0 + 𝑡(𝐿𝐿)

𝑎0 )
𝒱3

 

(If one choses 𝒱3 to be infinite in an asymptotically flat spacetime, this total energy-

momentum transforms like a Minkowski vector (density) at infinity.) Sometimes, it’s 

convenient to express the volume integrals as surface integrals. Exploiting that the continuity 

equation can be re-written in terms of Landau and Lifshitz’s superpotential 𝐻𝛼𝜇𝛽𝜈, one obtains 

𝑃𝑎 =
𝑐³

16𝜋𝐺
∮ 𝑑𝜎𝑘𝜕𝜇𝐻

𝛼𝜇0𝑘.
𝜕𝒱3

 

For the total energy of the system (i.e. matter cum gravitational), we take the volume to lie in 

the proximity of the source, i.e. close to the so-called near-zone. Here, “close” means “not 

many wavelengths away from the source”. That is: The distance is at most comparable to the 

characteristic wavelength of the emitted gravitational radiation. The total energy is then 
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determined by extracting those degrees of freedom associated with the matter and non-

radiative gravitational energy-momentum: 

𝐸 = [
𝑐4

16𝜋𝐺
∮ 𝑑𝜎𝑘𝜕𝜇𝐻

𝛼𝜇0𝑘

𝜕𝒱3
𝑁𝑍

]

𝑐𝑜𝑛𝑠

. 

The brackets "[… ]𝑐𝑜𝑛𝑠" indicate that one removes those degrees of freedom associated with 

gravitational radiation. One is then left with what formally corresponds degrees of freedom 

of a conservative system. This energy 𝐸 decreases, when the system emits GWs.   

The energy loss is the energy that the GWs allegedly carry away. One can determine it by 

evaluating Landau-Lifshitz’s above integral far away from the source, the so-called wave-zone. 

There, the gravitational degrees of freedom associated with radiation dominate. 

Two remarks on this procedure are in order. Firstly, in order to actually perform the above 

evaluations, one generally needs different approximation schemes of the chosen model of the 

radiating source for different domains/”zones” (hence the above superscripts above the 

integration volumes). They are glued together via a suitable matching technique. Secondly, I 

take the standard explanation of the binary pulsars to invest the alleged energy transport via 

GWs with explanatory clout: the system loses energy because GWs carry away energy. This in 

turn explains why the orbits of the binaries decrease. More on this shortly. 

For the sake of concreteness, consider a system of two point-particles of equal mass M, 

rotating around their centre point with constant angular velocity 𝜔 and with the coordinate 

distance a between them (see e.g. Hobson, Efstathiou & Lasenby, 2006, Ch. 18.8). The 

corresponding balance equation in leading order is: 

𝑑

𝑑𝑡
(
1

2
(2𝑀)𝑣2 −

𝐺𝑀

2𝑎
) = −

128𝐺

5𝑐5
𝑀²𝑎4𝜔6. 

The l.h.s. describes the system’s change in total energy. (For higher accuracy, next-leading 

order terms can also be consistently incorporated. This yields correction terms to the Kepler 

potential (responsible e.g. for the perihelion shift), as well as velocity-dependent terms, 

construed from a Newtonian perspective as corrections to kinetic energy.) The r.h.s. is 

interpreted as the energy loss via emission of GWs. From this balance equation, one can derive 

an equation for the spin-up, i.e. the rate of change of the orbital period P, directly accessible 

to observation: 
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�̇� = −
96

5
4
1
3𝜋 (

2𝜋𝐺𝑀

𝑃
)

5
3⁄

. 

Via the following three propositions we can explicate the logical structure of the standard 

explanation: 

(1) Along the bound or scattered orbits of a 2-body system (i.e. if the orbits prescribed by the 

equations of motion don’t decay), the system’s total (i.e. gravitational cum matter) energy-

momentum is conserved. 

(2) The binary system’s total energy-momentum is conserved. 

(3) GWs carry away energy-momentum from the system. 

Given (1), it follows from (2) and (3) that orbits decay: because GWs carry energy away from 

the system, the otherwise bound orbits decay. GW energy in (3), alongside with the principle 

(1), subserves as the explanans for the decrease in total energy. Via modus tollens of (1) it 

entails the explanandum, the orbital decay (“ℰ”): 

(3) ⟶ ¬(2)
(1)
→ ℰ. 

II.3.2 Criticism 

Three types of defects afflict this standard explanation. It contains assumptions and concepts 

fundamentally at odds with GR. Furthermore, two of its premises turn out to be unnecessarily 

strong, and in fact unjustified, respectively.  

The first strand of criticism applies to all three steps: (1), (2) and (3) involve GW energy or 

gravitational energy. Both are problematic notions (cf., for instance, Hoefer, 2000, Curiel, 

2000, Petkov, 2017). What is more, the standard explanation tacitly assumes that one can 

clearly sever the system’s gravitational energy-momentum from that of the GW. Whilst true 

for the lowest perturbative orders, in higher orders the radiative and the static gravitational 

degrees of freedom are inextricably interwoven. In consequence, the equations of motion for 

the binaries defy a standard Lagrangian or Hamiltonian formulation. (Recall that in Classical 

Mechanics systems with generic (not purely velocity-dependent) friction can’t be treated 

within the standard Lagrangian framework. In leading order, one can in fact regard the back 

reaction on binaries due to gravitational radiation as a form of friction. This is done e.g. in. 

Padmanabhan (2010), Ch. 9.6.2.) Hence, the system’s total energy-momentum can’t even be 

defined for higher perturbative orders. 
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To introduce energy for (gravitationally or electromagnetically) radiating systems, one must 

appeal to a principle of energy-momentum conservation: The radiated energy is constructed 

such that energy conservation is restored.22 But in GR this principle becomes doubtful. We 

saw this in §2.3: Global conservation of matter energy-momentum no longer holds except in 

symmetric spacetimes. Likewise, in §2.4 we discussed the problems that impede a realist 

stance towards the local continuity equation 𝜕𝜇 (|𝑔| (𝑇
𝜇𝜈 + 𝑡(𝐿𝐿)

𝜇𝜈
)) = 0.  

A second line of attack aims at assumption (3) as gratuitously strong: it’s unnecessary to 

demand that energy be carried away. For the argument to go through, it suffices that the 

system’s total energy-momentum decreases. The loss in energy-momentum needn’t be 

compensated by equally real energy, ascribable to the GW and transported continuously from 

one place to another. What matters is the energy loss - not a story about how to track the 

“missing” energy.  

What’s the difference between violation of energy conservation and the “missing energy” 

being carried elsewhere? After all, as Curiel (2000, p. 9) pithily remarks: “One cannot tag hunks 

of energy as one can hunks of cheese, and so one cannot identify the energy that this system 

lost with the energy that that one gained in the same way one could if one were talking about 

cheese.”  

Three considerations bear upon the choice between failure of energy conservation and energy 

transfer: 1. the contingency of energy conservation on symmetries, 2. the existence of a 

satisfactory formal account/representation of the energy transport, and 3. the explanatory 

value of postulating energy transport rather than energy decrease simpliciter, respectively. 

In GR the vanishing covariant divergence of the energy-momentum flux in a direction of a 

time-like 𝜉, ∇𝑎(𝑇𝑏
𝑎𝜉𝑏) ≠ 0 doesn’t yield a conserved global/integral quantity. It’s widely 

acknowledged that this simply reflects that energy conservation no longer holds - a feature 

less revisionary than may appear at first sight: after all, the special-relativistic conservation 

laws for energy-momentum and angular momentum depend on the 10 Killing vectors of 

Minkowski space. Generic GR spacetimes, by contrast, lack any symmetries (§2.3). So, absent 

such symmetries, why expect energy-momentum conservation to hold?  

                                                           
22 Poisson & Will (2014, Ch. 12.1) stress the analogous procedure for electromagnetism. 
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Secondly, there doesn’t exist any conceptually unproblematic way to express the dissipated 

energy. The most prominent way, for instance, via pseudotensors, faces numerous challenges, 

reviewed in §2.4. By contrast, the energy emitted by an electromagnetically radiating system 

allows for a tensorial representation. Indeed, there is a large consensus regarding the “non-

localisability” of the dissipated energy (expressed, for example, in Misner, Thorne & Wheeler, 

1973, p. 467; cf. Curiel, 2013 for a rigorous proof): it’s indeed impossible to specify where in 

spacetime this GW energy resides. No argument, however, is presented why one should 

believe in the existence of gravitational/GW energy to begin with. Such ominous non-

localisability poses interpretative challenges. (At the minimum, it forces us to revise 

established conceptual frameworks for field theories, such as Anderson’s (1967) framework 

of geometric objects. Anderson explicitly states that (pseudotensorial) gravitational energy 

doesn’t form a geometric object.) Hence, it seems desirable to eschew non-localisable 

quantities, if possible. We’ll explore this option presently.  

A third aspect germane to adjudicating between energy non-conservation and energy 

transport via GWs is the explanatory surplus value of the latter choice: does postulating GW 

energy transport help us better explain, or understand, certain phenomena? If that were the 

case, an inference to the best explanation would significantly strengthen the claim that a 

system’s energy-momentum non-conservation should be accounted for in terms of GW 

energy-momentum transport. 

I next turn to this question. Is a better explanation of the binary pulsars’ orbital decay 

available? I submit this is the case. (Applications of gravitational energy in other contexts, e.g. 

merger scenarios of Black Holes or the intricate interaction of GWs with a detector, such as 

LIGO, call for an independent study. My subsequent analysis, confined to binary pulsars, thus 

has more programmatic than conclusive character.) 

II.3.3. A dynamical explanation 

Let’s revert to premise (1), pivotal to the standard explanation. Why believe that if the 

particles follow scattered or bound orbits, the system’s total energy is conserved? 
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The answer one would like to give is: because the theory’s dynamics – i.e. the equations of 

motion (EoMs)23 together with the Einstein Equations (EEs) – tell us so.  In Newtonian 

Mechanics, energy is generally conserved; the EoMs imply that orbits of celestial bodies are 

either hyperbolic (“scattered”) or elliptical (“bound”). A planet or comet cannot spiral into the 

sun without energy dissipation, e.g. via “tidal friction”. (The latter would count as the cause 

for the planet’s orbital decay.) 

Why assume the same in GR? I propose that we simply shouldn’t. GR’s EoMs and EEs dictate 

that the binary pulsars’ orbit decay. There is no need to invoke any quantity to explain the 

deviation from bound orbits. If one were to maintain (1), one would pick out from the full 

EoMs those parts that describe conservative systems, i.e. systems whose energy is conserved. 

The deviation from the orbits of these conserved systems would then be explained in terms 

of the energy losses via GWs. One would split the EoMs into a conservative (“cEoMs”) and a 

non-conservative part; the former would be treated as explanatorily distinguished. The 

deviation of the system’s actual orbits from the ones obtained from the cEoMs would call for 

an explanation in terms of energy losses, whereas the conservative orbits would be seen as 

the explanatorily default motion. What vindicates such a split? The reason seems to be little 

more than habituation from pre-GR physics (where energy-momentum conservation is, of 

course, valid and ubiquitously useful). The conviction that all systems are conservative, unless 

some friction or radiation dissipates energy, is so deeply engrained in our physical hunches 

that it has ossified into dogma. But if its plausibility presupposes the validity of energy-

momentum conservation, and the latter needs to be jettisoned (or at least becomes 

controversial) in GR, the justification of (1) lapses. 

Instead, GR compels us just to accept that no bound solutions of the general-relativistic binary 

problem exist (Papapetrou, 1957; 1958). As Cooperstock and Tieu (2012, p. 83) put it, “on this 

basis, the period-changing binary pulsar is simply manifesting its conformity with the 

mathematical demands of Einstein’s General Relativity rather than the preconceptions 

regarding energy.”  

 

It thus seems apposite to supplant (1) by the following principle: 

                                                           
23 By the EoMs I mean the field equations for the non-gravitational/matter fields.    
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(1GR) In GR, two-body systems emit GWs and their orbits are in-spiralling. 

By the same token, let’s revise (2) by embracing GR’s failure of energy-momentum 

conservation. In order to evade the problems associated with gravitational energy, we must 

also modify the reference to total energy-momentum. As a result, let’s supplant (2) by 

(2GR) In generic (non-static) spacetimes, matter energy-momentum isn’t conserved. 

Since (3) turned out to be unnecessarily strong and involved the controversial existence of GW 

energy, we drop it.  

Both (1GR) and (2GR) needn’t be posited as independent principles: They ensue from the EEs 

and EoMs. The conjunction of the EEs and the EoMs thus furnishes us with an explanation for 

the orbital decay (as before: “ℰ”): because of the EEs and the EoMs, the orbits of the system 

are inspiralling.  

Let’s be a bit more precise and specify the antecedent matter conditions (QUA) that -due to 

the EEs and the EoMs- result in inspiralling orbits of systems emitting GWs.  For a system to 

generate GWs, its matter quadrupole moment tensor  

𝐼𝑖𝑗 = ∫𝑑3 𝑦𝑇00(𝑐𝑡, 𝑦 )𝑦𝑖𝑦𝑗 

must vary in time. 

We then arrive at an explanation that makes reference only to a condition on the matter 

energy-momentum (QUA), the EEs and the EoMs. It manifestly draws only on bona fide GR 

concepts and assumptions. In lieu of GW energy and (1) in the standard explanation, the 

explanantia in the dynamical explanation are the EEs and EoMs, as well as the time-varying 

quadrupole moment of the matter energy-momentum distribution as the antecedent 

conditions. Because the quadrupole moment of the matter energy-momentum distribution 

varies in time (QUA), the EEs and EoMs imply that the system’s orbits decay:  

(QUA)
(𝐸𝑜𝑀𝑠)&(𝐸𝐸𝑠)
→          ℰ. 

I’ll dub this the “dynamical” explanation of the orbital decay, as its explanantia are GR’s 

dynamics – the general-relativistic EoMs and EEs.  
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Interestingly, according to this dynamical interpretation, GWs no longer play any explanatory 

role. Rather, the emission of GWs and the orbital decay share a common cause in the 

antecedent matter condition: 

(QUA)
(𝐸𝑜𝑀𝑠)&(𝐸𝐸𝑠)
→          ℰ & GW emission. 

By means of illustrating the dynamical explanation, it’s insightful to address Petkov’s recent 

objection to the standard interpretation of binary systems.24 According to Petkov (2017, p. 

11), “[…] [it] contradicts general relativity, particularly the geodesic hypothesis […], because 

by the geodesic hypothesis the neutron stars, whose worldlines had been regarded as exact 

geodesics […] move by inertia without losing energy since the very essence of inertial motion 

is motion without any loss of energy.” 

(For the sake of concision, I’ll ignore mathematical qualms about the use of point-particles in 

GR, cf., however, Straumann, 2013, Ch. 6.4, 6.5; Wayne, 2017.) The dynamical explanation 

resolves the conflict Petkov animadverts upon. With respect to the metric that satisfies the 

EEs (determined, say, numerically to the desired degree of accuracy), the pulsars indeed 

follow geodesics. (For dust point-particles, as which the binaries are modelled with mass m, 

worldline 𝑧𝑎(𝜏) and the energy-momentum tensor 𝑇𝑎𝑏(𝑥) =
𝑚

√|𝑔|
∫ 𝑧𝑎(𝜏)𝑧𝑏(𝜏) 𝛿4(𝑥 −

𝑧(𝜏))𝑑𝜏 , the EoMs needn’t be postulated independently: the EEs imply them.). In contrast to 

the rectilinear ones in Minkowski spacetime, these geodesics are spiraling-in towards each 

other. Four-dimensionally, their wordlines can be envisioned as a double helix whose radius 

decreases with time. This helical shape of the binaries’ worldlines is a brute fact of GR’s 

spacetime geometry (more precisely: GR’s inertial structure, encoded in the affine connection 

compatible with the metric that satisfies the EEs). The orbits of the 2-body problem -i.e. the 

sequence of three-dimensionals projections of the two worldlines onto simultaneity planes- 

just fail to be stable.  

                                                           
24 Bondi (as reported in Kennefick, 2007, p. 200) voiced the same argument earlier. 
It’s not clear, however, that Bondi always distinguishes clearly enough between the emission of GWs and the 
transfer of energy-momentum via GWs. I take the novelty of Petkov’s argument to consist in making this 
distinction. 
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The dynamical explanation desists from identifying the system’s total energy-momentum with 

the “energy-momentum” constructible from the conservative parts of the dynamics.25 It 

dispenses with any notion of energy-momentum other than the energy-momentum of matter. 

(The latter generically turns out not to be conserved.) For the point-particles in free-fall this 

energy coincides with their rest mass-energy. It’s indeed conserved. In summary, Petkov’s 

diagnosis of inconsistency of the standard explanation rests on the (tacit) premise that the 

orbits of the general-relativistic 2-body problem must be bound and that the inspiralling must 

be explained in terms of energy-momentum transport.26 The dynamical explanation rejects 

these assumptions as unwarranted. 

 

II.3.3 Dynamical vs. standard interpretation 

We are now in a position to compare the standard and the dynamical explanation. How does 

the latter fare vis-à-vis the former? I’ll argue below that the dynamical account is superior on 

grounds of parsimony, universal scope, depth and unificatory power. The merits of the 

standard explanation are limited to familiarity to pre-GR concepts and principles. 

For reasons of space, my discussion focuses on the binary system’s problem of motion. I set 

aside the question whether there are other phenomena whose explanation involve GW 

energy. (Such might include the so-called CFS instability of rotating neutron stars (see e.g. Ricci 

                                                           
25 More precisely, on the standard explanation, one would define the system’s energy as the energy associated 
with the Einstein-Infeld-Hoffmann Lagrangian (see e.g. Straumann, 2013, Ch. 6.5). 
26 While Petkov (2012, p. 136), too, disputes that GWs transport away the energy, he suggests an alternative 
causal story in terms of tidal friction – a proposal that strikes me as ad-hoc. 

Fig. 3:  

Helical worldline of one of the binary 

partners. One spatial dimension is 

suppressed. 
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& Schutz, 2010, sect. 6.2), (classical) black hole thermodynamics or astrophysical energy 

extraction processes (see Geroch, 1973).) 

The standard explanation relies on gravitational energy, GW energy and energy-momentum 

conservation. All three are controversial concepts within GR’s fundamental framework. Here, 

I’ll refrain from the strong claim that such concepts are illegitimate within GR. Yet, given their 

controversial nature, it seems judicious to prefer explanations that do without them.    

For a fairer comparison, let’s first re-formulate and refine the standard explanation for orbital 

decay by explicating the more fundamental principles on which its elements rest. Those 

comprise: 

- a time-varying quadrupole momentum distribution of matter (QUA), as in the dynamical 

explanation 

- the Einstein Equations (EEs) 

- the split (“∆”) of the EoMs into the conservative parts (cEoMs), associated with the dynamics 

of the system, and non-conservative parts, associated with the dissipative gravitational 

radiation. 

From these building blocks, the three assumptions (1)-(3) of the standard interpretation can 

be reconstructed. A system’s total energy-momentum is defined as the energy associated with 

the conservative dynamics encoded by cEoMs. By definition, it’s conserved, unless the system 

radiates. Since the effective full EoMs also contain non-conservative dynamics (in other words: 

as a result of the cEoMs-EoMs split ∆), the GW depletes the system’s energy.  

On the now refined standard explanation, gravitational radiation is emitted -in accordance 

with the EEs and the full EoMs- because the system’s quadrupole moment varies in time 

(QUA). Due to ∆, the solutions of the full EoMs deviate from those of the cEoMs; the system 

exhibits orbital decay. The refined standard explanation thus takes the following logical form: 

(QUA)
(𝐸𝐸𝑠&𝐸𝑜𝑀𝑠)
→         GW emission 

∆
→GWs deplete the system′s energy 

(𝑐𝐸𝑜𝑀𝑠)
→     ℰ   

The dynamical explanation, by contrast, took this form:  

(QUA)
(𝐸𝑜𝑀)&(𝐸𝐸𝑠)
→         ℰ. 
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We can now squarely compare both. I first want to rebut three potential advantages one might 

see in the standard interpretation: its intuitive appeal and heuristic value, its close ties to 

observable quantities and its causal-mechanistic character, respectively. 

With its appeal to familiar concepts and principles, the standard explanation of the binary 

problem has intuitive allure, and – especially in light of the analogy with electromagnetism- 

heuristic value.27 Yet, many will dismiss such subjectively perceived advantages as irrelevant 

to an explanation’s quality: does the (putative) un-intuitiveness of quantum mechanical 

explanations, say, of 𝛼-decay in terms of quantum tunneling lessen their value? Furthermore, 

our “intuitions” and “heuristic value” are considerably depend on the formal approach to the 

general-relativistic problem of motion which we adopt. Lehmkuhl (2017ab) distinguishes 

between what he calls the (more common) “T-approach“ and the “vacuum approach”, 

respectively. The former focuses on the energy-momentum tensor. It thus invites intuitions 

involving gravitational and GWs’ energy-momentum. By contrast, the somewhat neglected 

vacuum approach focuses on the l.h.s. of the Einstein Equations. Owing to this different 

outlook, explanations involving energy – be it gravitational or non-gravitational- seem less 

natural in the vacuum approach.  

A different line of defence of the standard view on binary systems might run as follows: Does 

the use of gravitational and GW energy perhaps enable us to ascertain more easily GR’s 

empirical content? I fail to see how this could be true. If on the one hand one construes the 

argument as extolling the intuitiveness of the elements of the standard interpretation, it 

seems to collapse into the appeal to familiarity. Regarding that I have already voiced my 

misgivings. If on the other hand one construes the argument as the claim that the standard 

explanation renders the observational content more explicit, it’s plainly false: information 

about the observables – here: the orbital decay – is no less present in the dynamical 

interpretation.  

Perhaps most promising is the idea that the standard explanation provides a causal-

mechanistic explanation. The guiding thoughts here are that firstly energy transfer is the 

hallmark of causal processes (see e.g. Dowe, 2009), and secondly that causal-mechanistic 

                                                           
27 To be sure: The emphasis of such analogues between GR and non-GR physical theories played a vital 
sociological part in GR’s reinvigoration and re-integration into mainstream physics in the 1950s and 60s (see 
Schutz, 2012 for details). 
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explanations are pre-eminent types of explanations. But this maneuver faces three objections. 

Firstly, the notion of causality – and a fortiori causal explanations – is notoriously ambiguous. 

In GR, the difficulties are even exacerbated (Curiel, 2000; 2015). Furthermore, it’s not obvious 

to me that causal explanations necessarily involve energy transfer. Are the explanations of 

action-at-a-distance theories, say, Bohmian Mechanics or Feynman-Wheeler absorber theory 

(neither of which prima facie involves energy transfer) un-controversially non-causal? Assume 

for the sake of the argument that causality does necessarily involve energy transfer. Still, one 

can well question that causal-mechanistic explanations are inherently superior to non-causal 

ones (cf. Reutlinger & Saatsi, 2018). Electron degeneracy pressure, for example, is standardly 

explained in terms of Pauli’s Exclusion Principle, i.e. a symmetry principle – rather than a 

causal mechanism. Why should this non-causal nature detract from the value of the standard 

explanation of, say, white dwarf formation in terms of the Pauli Principle?  

In conclusion, the standard interpretation doesn’t have any obvious intrinsic advantages. But 

perhaps its advantages are comparative. How do the standard and the dynamical explanation 

each score on the explanatory virtues of parsimony, scope and depth?   

Regarding parsimony, note first that in terms of calculational efforts, both explanations are on 

a par. Regardless of which explanation one prefers, one has to solve the coupled set of partial 

differential equations formed by the EoMs and the EEs. Adherents of either explanation must 

use the same computational methods, e.g. approximation schemes.  

The difference between both explanations thus boils down to: which status to attribute to the 

split ∆ the (refined) standard explanation involves? As I argued earlier, there is no sound a 

priori justification for distinguishing the conservative parts of the EoMs. It’s an additional 

postulate of the standard explanation. The dynamical explanation, by contrast, rejects it: it’s 

committed neither to the split ∆ nor the distinction of the cEoMs.  

It also deserves reiterating here that the refined formulation of the standard explanation 

renders it transparent that claim (3), purporting the transport of GW energy-momentum, is 

explanatorily redundant. Only the decrease of the system’s energy matters.  Rather than 

contributing to the explanation of the orbital decay, (3) requires a substantive principle to 

hold: conservation of energy-momentum (EC) – more precisely, a realist interpretation of the 

formal energy-momentum balance of the pseudotensorial type, according to which the 

energy-momentum dissipated from a system continues to exist elsewhere: 
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(QUA)
(𝐸𝐸𝑞)
→    GW emission 

(𝑐𝐸𝑜𝑀𝑠) & ∆
→        GWs deplete the system′s senergy 

(𝐸𝐶)
→  (3). 

Hence, if in order to support GW energy transport, one wants to appeal to the standard 

explanation as the best explanation, one must first substantiate not only the privileged status 

of the cEoMs, but also (EC) (a realist interpretation of the energy-momentum continuity 

equation). This need for two additional principles seems to undermine the prerequisite for the 

inference to the best explanation - namely that it be the best explanation qua its greater 

simplicity, all else being equal.  

Last, not least, the dynamical account acquits itself particularly well in terms of parsimony, 

when matter only interacts gravitationally: then, the EEs imply the EoMs, simplifying the 

dynamical explanation to:   

(QUA)
(𝐸𝐸𝑠)
→   ℰ 

In summary, the verdict on parsimony disfavors the standard explanation: the latter employs 

more explanatory machinery (viz. energy conservation, gravitational energy, GW energy and 

their separation) than the dynamical explanation. 

Perhaps the standard account’s fortes lie elsewhere – for instance in scope: is the standard 

interpretation able to cover a wider domain than the dynamical interpretation? I dispute this, 

too. In higher perturbative orders, the gravitational and radiative degrees of freedom of the 

metric mix. It’s no longer possible to unambiguously classify the higher order contributions of 

the EoMs as pertaining to the GW or the system (see e.g. Maggiore, 2007, p. 249, fn. 17) - as 

the standard interpretation via its split ∆ presupposes. One could, of course, just stipulate by 

fiat that only the cEoMs describe the system qua their conservativeness. But such a decree 

lacks any physical foundation. In short, the scope of the standard explanation is limited to low 

levels of approximation (viz. 2.5 or 3PPN terms).28 By contrast, the scope of the dynamical 

explanation coincides with the scope of GR and the general-relativistic EoMs: wherever 

classical GR is valid, a dynamical explanation of a phenomenon is possible – for instance, in 

                                                           
28 In personal correspondence, Clifford Will stated: ”In my opinion, a Lagrangian or a Hamiltonian for this problem 
only makes sense up to 2PN order, where energy is truly conserved (if you artificially turn off the 2.5PN radiation 
reaction terms, you can also write down a Lagrangian for the 3PN terms). Beyond this order, the fundamental 
things are the equations of motion.”  
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non-asymptotically flat spacetimes, which don’t permit the definition of any standard notion 

of gravitational energy.  

This leads us to the issue of depth. At what level of description do the two explanations 

operate? From the aforesaid, it’s clear that the (refined) standard explanation qua its reliance 

on the cEoMs and energy conservation employs non-fundamental principles. By contrast, the 

dynamical explanation only draws on the EoMs and the EEs. For non-quantum purposes, they 

may be regarded as fundamental. Hence, also with respect to depth, the dynamical 

explanation trumps the standard one. (I don’t believe that depth, thus construed, is a value 

per se. It can be traded-off for other explanatory benefits (cf. Knox, 2016; 2017; Franklin & 

Knox 2017, ms). Ceteris paribus, however, it seems plausible to give preference to deep 

explanations.) 

Lastly, let’s turn to unificatory power. Does the standard account perhaps excel in this regard? 

Prima facie, one might think so: with its distinction of a conservative part of the dynamics -the 

cEoMs- it appears to preserve continuity with the dynamics of, and explanatory practices in 

pre-GR theories. Therefore, prima facie the standard interpretation’s privileging of the cEoMs 

instantiates a subsumption under a general explanatory scheme, successful in pre-GR 

contexts.  

The opposite is the case. Firstly, dividing the EoMs into a conservative and a non-conservative 

part isn’t even consistently feasible.  Moreover, in contrast to pre-GR theories, such a division 

of the EoMs is artificial in GR. Because of its reliance on this division, the standard explanation 

therefore cannot be subsumed under a more general explanatory scheme. The general 

explanatory scheme we find  and apply also in other theories is just to take the EoMs -be they 

conservative or not; in pre-GR physics they just happen to be conservative- and determine 

from them how matter behaves under certain matter conditions (“MAT”). The unificatory 

explanatory scheme thus is:  

(MAT)
(𝐸𝑜𝑀𝑠)
→     explanandum. 

This is precisely the rationale of the dynamical explanation. The conservativeness of the EoMs 

is inessential. 

From what I can see, this unificatory explanatory scheme is universally applied in other 

explanations in GR, as well. Think , for example, of the explanation of light bending in GR: light 
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is deflected by gravitating bodies because (a) according to the EoMs of light, light rays follow 

null geodesics29 and (b) the null geodesics linked with the metric that solves the EEs deviate 

from the straight geodesics of flat spacetime. (The explanations of perihelion shift, the 

Thirring-Lense effect or cosmic expansion of FLRW universes are equally straightforward.) 

In conclusion, also regarding unification, the dynamical explanation trumps the standard one. 

The former instantiates a standard explanatory scheme of great unificatory power. By 

contrast, the standard account of binary systems implausibly generalises and elevates 

contingent features of pre-GR theories.      

In summary, on four central virtues of good explanations – parsimony, depth, scope and 

unification – the dynamical interpretation of binary systems outperforms the standard one.  

In this section, I presented an attractive alternative to the standard explanation of the binary 

system’s orbital decay. It doesn’t presuppose gravitational or GW energy, and proved superior 

on various criteria. Advantages of the standard account turned out to be specious. The 

section’s title question can therefore be answered in the negative: the standard treatment of 

binary systems doesn’t provide an inference to the best explanation for GW energy.  

 

II.4 Outlook 

For the line of thought pursued here, two directions of further enquiry are particularly 

promising:  

One concerns an in-depth analysis of the status and role of the various proposals for 

gravitational energy-momentum in GR. Of particular interest here is the status of Bondi’s 

News Function (e.g. Straumann, 2012, Ch. 6.1.2). It’s constructed to demarcate systems with 

gravitational radiation from those without. According to its inventor himself, “nobody has fully 

understood” it (in: Kennefick, 2007, p. 208).  

Another line of enquiry should examine the role GW and gravitational energy play in 

relativistic astrophysics. As I argued in §3.2, the inference from failure of energy conservation 

to energy transfer – i.e. the ascription of energy to GWs or spacetime more generally – is a 

                                                           
29 More precisely: in the optical limit (see, e.g., Geroch, 2013, Ch. 13). 
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non-sequitur. One may expect further insights from studying other astrophysical processes, 

especially those during which energy is extracted from a gravitating source, such as the energy 

gain of particle passing through the ergosphere of a Kerr Black Hole.  

 

This chapter: 

We saw that the standard arguments on which our expectation rests that gravitational waves 

– representative of general-relativistic gravity, more generally – carry energy are problematic. 

They presuppose assumptions one may well question. 

 

The next chapter: 

Let’s move beyond our intuitions and hunches, shaped – for better or worse – by gravitational 

waves. What are specific candidates for gravitational energy-stress in General Relativity?  Do 

they settle the matter more satisfactorily?  
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III. Local Gravitational Energy and Energy 

Conservation in General Relativity 

 

Abstract: 

This chapter critically examines energy-momentum conservation and local (differential) 

notions of gravitational energy in General Relativity (GR). On the one hand, I argue that 

energy-momentum of matter is indeed locally (differentially) conserved: physical matter 

energy-momentum 4-currents possess no genuine sinks/sources. On the other hand, global 

(integral) energy-momentum conservation is contingent on spacetime symmetries. Local 

gravitational energy-momentum is found to be a supererogatory notion. Various explicit 

proposals for local gravitational energy-momentum are investigated and found wanting. 

Besides pseudotensors, the proposals considered include those of Lorentz and Levi-Civita, 

Pitts and Baker. It is concluded that the ontological commitment we ought to have towards 

gravitational energy in GR mimics the natural anti-realism/eliminativism towards apparent 

forces in Newtonian Mechanics.           

Key words: Gravitational energy, energy conservation, General Relativity, inertial frames, pseudotensors, 

cosmological constant, energy-momentum tensor 
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III.1. Introduction 

Energy and its conservation are a pivotal part of almost all of physics. From early on, attempts 

to define energy for the gravitational field in GR sparked controversy. Progress in this regard 

was in part responsible for GR’s reinvigoration as mainstream physics from the 1950s on (see 

Schutz,-2012; Kennefick, 2007, Ch. 11, 12). But the quest for a fully satisfactory account of 

gravitational energy continues. In the following, I examine whether in GR gravitational energy 

– the energy ascribable to spacetime itself – is a meaningful local (differential) notion: does 

there exist something like gravitational energy-momentum density? A related question 

concerns the validity of energy-momentum conservation: does non-gravitational/matter 

energy-momentum 4-currents possess sources or sinks? 

The aim of this chapter is conceptual analysis: can or should one endorse realism about local 

gravitational energy in GR, drawing only on the latter’s fundamental concepts?  (I will steer 

clear of the question of whether a higher-level concept of gravitational energy exacts some 

form of realist commitment – whether, for instance, an effective gravitational energy, 

definable in a certain domain, counts as a “real pattern” in the sense of Dennett, 1991.30) My 

objective is conceptual clarification: what can be said about local gravitational energy within 

GR’s fundamental ontology and ideology?  

I contest the existence of local gravitational energy in GR. It will be argued to be an eliminable 

concept, not meriting a realist stance. Nonetheless, there is considerable continuity between 

GR and its precursors. Locally, the energy-momentum of matter is indeed conserved, with no 

need for gravitational energy contributions to restore an energy balance. The difference 

between GR and its precursors relevant here lies solely in the fact that GR’s inertial frames are 

only defined locally, in contrast to the globally defined ones in Classical Mechanics (CM) or 

Special Relativity (SR).  

Those views are widespread amongst relativists. This chapter will seek to vindicate them. To 

date, a systematic review and evaluation of the arguments in favour of them, as well as an 

exposition of a coherent account are pending. This I will attempt to provide. 

                                                           
30 Such an attempt is found in Read, 2017, to whom I respond in Ch. IV.   
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I will proceed as follows. In §2, I will first (§2.1) explore local energy-momentum conservation 

in generic spacetimes: Can the vanishing covariant derivative of the energy-momentum tensor 

be interpreted as a local energy conservation law? What are the role and status of 

gravitational energy-momentum in such conservation laws? §2.2 zooms in on symmetric 

spacetimes. In particular, I address the question of global energy conservation. §3 is devoted 

to local representations of gravitational energy. I first (§3.1) criticise Lorentz and Levi-Civita’s 

tensorial proposal and elaborate on the necessity of non-tensorial expressions for 

gravitational energy-momentum. As an example, I subsequently (§3.2) study pseudotensorial 

approaches via the Noether Theorems, and expound their main problems. §3.3 discusses Pitts’ 

proposal for an infinitely many component object for gravitational energy. Another proposal, 

based on the cosmological constant, is studied in §3.4.  A summary of my conclusions is 

provided in §4.     

I build upon pioneering work by Hoefer (2000). He characterises what he declares the 

“received view” of local representations of gravitational energy-momentum by the following 

three claims. First, one postulates the vanishing of the covariant divergence of the energy-

momentum tensor of matter, ∇𝑏𝑇
𝑎𝑏 = 0. Secondly, since in general it does not satisfy a 

proper continuity equation, ∂𝑏𝑇
𝑎𝑏 ≢ 0, the vanishing covariant divergence of the energy-

momentum tensor forms a conservation law proper only for the sum of material plus 

gravitational energy-momentum. That is: One posits contributions from gravitational energy, 

not included in 𝑇𝑎𝑏. Neglecting these contributions is supposed to result in apparent non-

conservation of energy-momentum, which is what ∂𝑏𝑇
𝑎𝑏 ≢ 0 is interpreted as. Thirdly, such 

gravitational energy contributions are then lumped into one object, the so-called “pseudo-

tensor” 𝑡𝑎𝑏 , inferred only indirectly, such that a continuity equation of the type 

𝜕𝑏(𝑇
𝑎𝑏 + 𝑡𝑎𝑏) = 0 is restored.  

Hoefer rejects this received view on two grounds. First, the non-uniqueness of 𝑡𝑎𝑏, in his 

opinion, undermines its well-definedness. Secondly, he takes its non-tensorial nature to 

obviate interpreting 𝑡𝑎𝑏  as an intrinsically meaningful, well-defined quantity. With the jury 

still out on future progress with respect to quasi-local definitions of energy in GR (which try to 

associate energy-momentum (density) not with individual spacetime points, but only with 

extended, finite regions of spacetime), Hoefer enjoins us to relinquish both the notion of local 

gravitational energy-momentum and conservation of energy-momentum in GR altogether. 
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Hoefer’s arguments are not likely to sway believers in gravitational energy. To begin with, his 

claim that the gravitational energy-momentum pseudotensor 𝑡𝑎𝑏  is inferred “only indirectly”, 

insinuating its ad-hoc character, is misleading: as we will sketch in §3.3, 𝑡𝑎𝑏  arises in a direct 

way no less naturally than energy-momentum in other field theories.  

Hoefer’s objections, too, call for further clarification. For one, the nature of the ambiguity and 

non-uniqueness of pseudotensors must be fleshed out:  what does it consist in? How severe 

is it? Is it physically significant? Furthermore, vis-à-vis Hoefer’s objection to the lack of 

coordinate invariance, one may be tempted to bite the bullet: what is inherently wrong with 

non-tensors? In itself, an object’s non-tensoriality need not undercut its meaningfulness: the 

connection coefficients, Γ𝑏𝑐
𝑎 =

1

2
𝑔𝑎𝑑(𝜕𝑐𝑔𝑑𝑏 + 𝜕𝑏𝑔𝑑𝑐 − 𝜕𝑑𝑔𝑏𝑐), attest to that. They are 

endowed with both a bona fide physical and geometric meaning, representing inertial 

structure, and (in the language of fiber bundles) connecting the fibers of the vector bundle 

over different points of the base manifold, respectively. Even if one shares Hoefer’s scepticism 

towards pseudotensors, are they indeed the only way to locally represent gravitational 

energy? Might there exist other approaches? The answer is yes. Bel and Robinson, for 

instance, have proposed a tensor which mimics the way the electromagnetic energy-

momentum tensor is constructed from the Faraday tensor (see, for instance Horský & 

Novotný, 1969, sect.III.4). To be sure, as a candidate for gravitational energy the Bel-Robinson 

tensor is not immune to criticism: neither it nor any of its powers possess the right units of 

energy-momentum. It would thus mandate a novel constant of nature, i.e. an additional 

structure, absent in GR simpliciter.  

This leads us to Lam’s recent refinement of Hoefer’s critique (Lam, 2011). He adverts to the 

need to introduce additional structure, in order for local energy-momentum conservation to 

hold, and for gravitational energy-momentum to be well-defined. 

Lam discusses the important special case of spacetimes instantiating a so-called Killing field 

(see §2.2). He argues that only such spacetimes allow ∇𝑏𝑇
𝑎𝑏 = 0 to be interpreted as a well-

defined local (and global) notion of energy-momentum conservation.  

Lam suggests the following construal: “[…] a time-like Killing vector field can be understood as 

defining a global inertial frame, which can represent a global family of inertial observers all at 

rest with each other” (p. 5). This global inertial frame, Lam asserts, “[…] can be understood in 



60 
 

a certain sense as a nondynamical background structure with respect to which integral 

nongravitational energy-momentum can be obtained. […] A fully dynamical metric field would 

prevent the existence of such global symmetries. […] In this sense, the nature of gravitational 

energy seems to be linked to the failure of certain global symmetries and, most importantly 

to the lack [of] non-dynamical background structures, that is to background independence” 

(ibid). In other words: GR’s background independence (absence of nondynamical objects), 

Lam argues, subverts energy-momentum. 

Lam deserves credit for honing Hoefer’s analysis of the pseudotensor by specifying what in his 

opinion their ambiguity consists in: the freedom to insert a term of the form 𝜕𝑐𝑈
𝑎[𝑏𝑐], i.e. 

antisymmetric in b and c, into the continuity equation without altering it: 𝜕𝑏(𝑇
𝑎𝑏 + 𝑡𝑎𝑏 +

𝜕𝑐𝑈
𝑎[𝑏𝑐]) ≡ 𝜕𝑏(𝑇

𝑎𝑏 + 𝑡𝑎𝑏). The pseudotensor, Lam concludes, hence lacks uniqueness in 

that any 𝑡𝑎𝑏 = 𝜕𝑐𝑈
𝑎[𝑏𝑐] −

1

2𝜅
𝐺𝑎𝑏 equally satisfies the continuity equation. (Here we have 

exploited the Einstein Equations, 𝐺𝑎𝑏 = 2𝜅𝑇𝑎𝑏 .)  

He also sharpens Hoefer’s principal argument against pseudotensors, their coordinate-

dependence. “In particular, at any spacetime point or along any world-line, there is a 

coordinate system in which [𝑡𝑎𝑏] vanishes. Since different coordinate representations are just 

different mathematical descriptions, relevant physical entities are usually taken to correspond 

to coordinate-independent entities […]. So, the coordinate […] dependence of [𝑡𝑎𝑏] shows 

that there is no (unique) gravitational energy-momentum, in the sense that such a quantity 

cannot be in general unambiguously defined at any spacetime point” (p. 6). 

Notwithstanding its improvement over Hoefer’s account, Lam’s own remains unsatisfactory. 

For one, as we will see below, while it is true that the existence of Killing symmetries is 

sufficient for the validity of local energy-momentum conservation, it is not necessary-–-

contrary to what Lam seems to suggest. More precisely, Lam implicitly presupposes a 

gratuitously strong definition of inertial reference frames for GR – one that posits the 

existence of Killing fields.31 

                                                           
31 Presumably, Lam has in mind something like Earman & Friedman’s definition of inertial frames explicitly 
determined by a time-like Killing vector (1973, pp. 353). It remains unclear, however, why a natural general-
relativistic generalisation of the notion of inertial frame in Newtonian Gravity (e.g. p. 332), should employ such 
a strong prerequisite. For one, strictly speaking this restricts the existence of inertial frames a priori to stationary 
spacetimes. Thereby, one precludes any remotely realistic scenarios. 
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Lam’s elucidations regarding the problematic status of, and link between, energy-momentum 

conservation and gravitational energy are deficient, as well. The connection between energy-

momentum conservation, gravitational energy, symmetries and GR’s background 

independence remains hand-waving-–-not least, since a precise definition of background 

independence is notoriously elusive (see, e.g. Pooley, 2015, esp. sect. 7; Read, unpublished).  

As in Hoefer’s case, a proponent of gravitational energy is likely to counter Lam’s ambiguity 

objection to pseudotensors by asking in what ways the situation differs from other field 

theories. It is crucial to note that the way pseudotensors arise in GR is in a completely standard 

way via the Noether Theorems. Lam mentions them in a footnote. But he does not expand on 

the connection. This would have pre-empted a potential misunderstanding: the form of the 

continuity equation that both Hoefer and Lam discuss is restricted to special (unimodular) 

coordinates, satisfying |𝑔|:= det(𝑔𝜇𝜈) = 1. But such a restriction is unnecessary. More 

importantly, it is not the source of the (vicious) coordinate-dependence of pseudotensorial 

expressions.  

Furthermore, a naïve reading of what Lam offers as another way to understand the 

pseudotensor – namely as nonlinear correction to the linearised Einstein tensor, i.e. higher 

perturbative orders32 – is problematic. It’s predicated on the premise that the Einstein 

Equations’ nonlinearity reflects the fact that gravitational energy acts as a source of the 

gravitational field itself. Two examples demonstrate that this can’t be quite right. First, a 

(consistent) implementation of self-energy in standard Newtonian Gravity leads to a non-

linear theory, too. Yet, its gravitational energy-stress tensor remains well-defined, even 

tensorial (Giulini, 1997). (An example of a non-gravitational theory that, despite its ferocious 

nonlinearity, admits of a fairly unproblematic notion of energy and its conservation is given by 

the Navier-Stokes Equations.) Secondly, the desire to explain GR’s nonlinearity stems from 

                                                           
The motivation behind Earman and Friedman’s stipulation is to preclude spacetimes, such as Gödel’s, in which 
no globally defined reference frames exist. These they dismiss for not allowing of a “globally consistent time 
sense”(p. 353).  
Suffice it to say here that Earman and Friedman fall short of a cogent argument why the non-orientability of 
certain spacetimes is supposed to be linked to inertial frames specifically: why assume that the problems of how 
to interpret such spacetimes originate in the non-existence of global inertial frames? It seems no less plausible 
to stipulate a definition of inertial frames that applies to such non-orientable spacetimes – and dismiss the latter 
(should one feel so inclined, at all) as unphysical on independent grounds. 
By contradistinction, I’ll adopt the weaker and more natural notion of general-relativistic inertial frames, 
identifying them with freely falling frames (see e.g. DiSalle, 2009, sect. 2.9). 
32 E.g. Hobson-et.-al., 2006, p. 473 for a similar claim. 
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comparing it to linear theories. Both physically – with the familiar linear theories being non-

fundamental, and structurally – such a comparison is implausible, though: rather, one should 

compare GR with likewise (fairly) fundamental, non-linear vectorial Yang-Mills-type theories 

(cf. Deser, 1970). Again, the immediate lesson is: nonlinearity isn’t the source of GR’s trouble 

with its gravitational field-energy. 

 

Similarly, Lam’s objection of coordinate-dependence is not persuasive. Coordinate-

dependence by itself need not be baneful: as long as a coordinate-dependent structure has 

the same symmetry group as the one of the given spacetime, the coordinate dependence is 

benign. It becomes vicious only if the coordinate-dependent object is not invariant under the 

spacetime’s symmetry transformations. I revert to this in §3.3. Although I concur with Lam’s 

thought that coordinate-dependence of the type pseudotensors elicit amounts to something 

akin to an unphysical gauge-fixing, we must clarify whether pseudotensors are benign or 

vicious in the sense just mentioned.   

Hoefer and Lam raise deep questions, and I am largely in agreement with their positions. This 

chapter intends to supplement their work, attempting to fill some of the indicated lacunae 

and to provide a systematic account of local energy-momentum conservation and local 

notions of gravitational energy within GR.  

 

III.2. Energy-momentum conservation in local form 

III.2.1. Energy-momentum conservation in generic spacetimes 

In lieu of the ordinary (partial) zero-divergence for the matter energy-momentum tensor, in 

GR we have the zero covariant divergence, ∇𝑏𝑇
𝑎𝑏 = 0. Here, 𝑇𝑎𝑏 = −

2

√|𝑔|

𝛿

𝛿𝑔𝑎𝑏
(√|𝑔|ℒ) 

denotes the matter energy-momentum tensor, with the matter Lagrangian ℒ =

ℒ(g𝑎𝑏; 𝜓, ∇𝑎𝜓, ∇𝑎,𝑏𝜓, . . ) for the (tensorially generic33) matter fields 𝜓.34 Throughout, I’ll 

                                                           
33 For how spinorial matter fits into the picture see Pitts (2011). 
34 Despite representing gravity via variational derivatives of a gravitational Lagrangian, Einstein never 
systematically defined energy-momentum tensor variationally nor did he work with matter Lagrangians (see 
Pitts, 2016a).  
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assume a Lagrangian approach also for GR’s matter sector. The vanishing of the covariant 

divergence holds independently of the Einstein Equations: it follows from diff(ℳ)-invariance, 

the imposition that the dynamical matter variables 𝜓 satisfy the Euler-Lagrange Equations, 

and the above form of the matter Lagrangian (see e.g. Hobson et al., 2006, Ch. 19.12 for 

technical details).  

In the literature (e.g. Bergmann, 1976, pp. 193; Brown & Brading,,2002; Padmanabhan,, 2010, 

p. 213), it is sometimes stated that ∇𝑏𝑇
𝑎𝑏 = 0 does not express local energy-momentum 

conservation simpliciter. Rather, it is said to denote the degree to which conservation is 

violated:  

𝜕𝑏𝑇
𝑎𝑏 = −2Γ𝑏𝑐

(𝑎
𝑇𝑏)𝑐(≢ 0)   (1). 

quantifies the extent to which energy-stress density/flux is no longer source-free/sink-free in 

generic reference frames.  

This is perhaps not the most perspicuous way of formulating the problem. It distracts from 

what is special about GR’s energy-momentum: in which regard does the above situation differ 

from conservation of the external electric 4-current, ∇𝑎𝑗(𝑒𝑥𝑡)
𝑎 = 0? After all, it too can be 

rewritten to yield apparent “sources/sinks” in generic reference frames:    

  

∂𝑎𝑗(𝑒𝑥𝑡)
𝑎 = −Γ𝑎𝑏

𝑎 𝑗(𝑒𝑥𝑡)
𝑏 (≢ 0)   (2). 

 

Only for unimodular coordinates (modulo global re-scalings), i.e. coordinates satisfying 

√|𝑔| = 𝑐𝑜𝑛𝑠𝑡., does the “source term” of the continuity equation on the r.h.s. vanish.35 

                                                           
This is arguably rooted in his scepticism towards any (classical) matter theories. For him, any classical matter 
theory was merely preliminary and phenomenological – to be superseded by a future quantum treatment. By 
contrast, he had considerable trust in the fundamental correctness of GR’s account of (pure) gravity (see e.g. 
Lehmkuhl, 2017, ms for details).   
35 Note that with this fixed volume element, unimodularity introduces an absolute structure, extraneous and 
inimical to GR’s overall non-absoluteness (cf., for instance, Anderson, 1967). 
The choice of unimodular coordinates is directly related to inertial frames – a concept that will occupy centre 
stage in the subsequent analysis. With respect to their global/integral properties, unimodular coordinates can 
be regarded as the closest counterparts of Lorentz/Euclidean coordinates on generically curved manifolds: they 
preserve a constant volume element. 

 ∂𝑎𝑗(𝑒𝑥𝑡)
𝑎 = −Γ𝑎𝑏

𝑎 𝑗(𝑒𝑥𝑡)
𝑏  yields a continuity equation proper, only if one selects as reference frames those 

counterparts of inertial reference frames in Minkowski spacetime. But the latter cease to be distinguished in GR. 
One conclusion of my subsequent arguments is that we should take GR’s notion of inertial structure more 
seriously: we need not (and should not) import it from non-GR theories.       
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In that case, however, the restriction to unimodular coordinates can be lifted. By considering 

the vector density of weight-1 (see e.g. Schrödinger, 1950, Ch. II for more on tensor densities) 

𝑗(̃𝑒𝑥𝑡)
𝑎 ≔ √|𝑔|𝑗(𝑒𝑥𝑡)

𝑎 , one obtains a 4-current that satisfies a continuity equation in every 

coordinate system:  

∇𝑎𝑗(̃𝑒𝑥𝑡)
𝑎 ≡ ∂𝑎𝑗(̃𝑒𝑥𝑡)

𝑎 ≡ 0   (3). 

The electric charge flux (weight-1 density) 𝑗(̃𝑒𝑥𝑡)
𝑎  thus defined is locally conserved without 

qualification. (Recall that √|𝑔 gives an infinitesimal volume element. Hence, the 

interpretation of (3) is conservation of electric charge, contained within an infinitesimal 

volume.) Is a similar move – the transition from a tensor to a tensor density (of whatever 

weight) – available also in the case of ∇𝑏𝑇
𝑎𝑏 = 0, whereby we could restore our intuitive 

sense of conservation, captured in the ordinary 4-divergence of a 4-current? 

 

To see what is troublesome about energy-momentum in GR specifically, we must be more 

circumspect. Consider an arbitrary time-like vector 𝜉. Along its direction, one can define the 

energy-momentum 4-current 𝑗𝑎[𝜉] ≔ 𝑇𝑏
𝑎𝜉𝑏. Unless 𝜉 is special (in a sense to be made precise 

presently), the covariant divergence of this 4-current does not vanish, ∇𝑎𝑗
𝑎[𝜉] = 𝑇𝑎𝑏∇

𝑎𝜉𝑏 ≠

0. This yields an ordinary continuity equation with non-vanishing source/sink terms in any 

reference frame: in no reference frame other than the special ones (in which ∇𝑎𝜉𝑏=0 ) is 𝑗𝑎[𝜉] 

locally conserved. (The transition to a vector density is of no avail here.) 

 

In short: The external electric 4-current satisfies an ordinary continuity equation for some 

coordinate systems – namely unimodular ones. (The corresponding weight-1 density does so 

even for every coordinate system.) By contrast, whether the energy-momentum 4-current 

𝑗𝑎[𝜉] satisfies an ordinary continuity equation (for some reference frames) depends on the 

choice of its direction 𝜉.    

 

In generic (“non-symmetric”, see §2.2) spacetimes, what are these distinguished directions of 

energy-momentum flux along which one would register the absence of sinks/sources? For 

inspiration, consider a free-falling observer 𝜉. In her proper (comoving) reference frame 𝛾, we 

have 𝜉𝑎|𝛾 = 𝛿0
𝑎 and Γ𝑏𝑐

𝑎 |𝛾 = 0. (Here, we’ll use the coordinates adapted to this frame, i.e. 

inertial ones along 𝛾.) The corresponding energy-momentum 4-current 𝑗𝑎[𝜉] that 𝜉 measures 

along her worldline is source-/sinkfree: 𝜕𝑎𝑗
𝑎[𝜉]|𝛾 = 0. Sources/sinks would appear for 𝜉 only, 
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when adopting reference frames other than her proper one. The energy-momentum 4-current 

along the worldline of observers not in free-fall, i.e. non-inertial observers, is locally conserved 

in no reference frame. 

How to construe these sinks/sources in local energy-momentum 4-currents for generic 

reference frames and along generic directions? Does it seriously jeopardise real energy-

momentum conservation (in a sense to be made precise)?  In particular, if energy-momentum 

isn’t conserved, is it because we have neglected gravitational contributions to it – having 

considered only energy-momentum of (non-gravitational) matter? For an answer, I will first 

identify the class of 𝜉s picked out by the apparent anisotropy of local energy-momentum 

conservation, as well as the reference frames for which energy-momentum is un-

controversially conserved locally.  

A prior side-glance to Classical Mechanics (CM) is instructive. There, an analogous problem 

arises for apparent/fictitious/inertial forces, e.g. the Coriolis or centrifugal force. They flout 

Newton’s Third Law of action-reaction. In contrast to genuine ones, apparent forces do not 

mediate physical interactions. They are not causes nor are they caused (cf. Nerlich, 1989, sect. 

5). We do not ascribe them the status of entities “out there”, forces as real as, say, the Lorentz 

force. They are more like shadows: existentially parasitic, causally inert and explanatorily non-

fundamental. We are wont to conceive of them as springing from descriptions in non-inertial 

coordinate systems. Ontologically, apparent forces are reduced to inertial motion, as it 

appears from non-inertial reference frames. They are artefacts of physically artificial 

descriptions (e.g. Maudlin, 2012, pp. 23 fn. 7). 

Inertial reference frames are inherently distinguished by “natural” (as opposed to “forced”, or 

caused, motion (cf., for instance, Brown 2007, p. 163). This class of kinematic states, privileged 

as default motion in which every body persists unless external forces act on it, is furnished by 

the theory’s inertial structure. Bodies moving inertially do not call for deeper explanations of 

this kind of motion (Nerlich, 1979; Janssen, 2009). Only non-inertial motion does: when a body 

deviates from inertial motion we ask for causes36 – in the form of external forces.  

                                                           
36 Nothing here hinges on any metaphysically thick understanding of causation. The above should be acceptable 
even to those sceptical of causation (such as Norton, 2003, 2009). The thrust of the above point is primarily 
explanatory: causes, in the intended broad construal, are the deeper explanantia called for, in order to account 
for certain phenomena.  
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“Inertially framed” accounts afford simpler explanations than a “non-inertially framed” one. 

They are adapted to the spacetime geometry, thereby making explicit what merits realist 

commitment. Conversely, extra terms that arise in non-inertial frames are representational 

(or perspectival) artefacts of physically unnatural descriptions.  

How do these remarks bear upon GR’s local energy-momentum conservation? First, they 

answer which directions are distinguished in generic spacetimes: directions along 

natural/inertial motion. In GR, this is motion along (time-like) geodesics (for systematic and 

historical details, see e.g. DiSalle, 2009, esp.2.9; Petkov, 2012; Knox, 2013, esp. sect. 2). 

Secondly, by the same token, we also get an answer to what the privileged reference frames 

are: ditto, the inertial ones. In GR, the latter are identified as free-fall frames 𝛾, the coordinates 

adjusted to them being normal coordinates. (Henceforth, I will use Fermi’s.) By construction, 

their connection coefficients vanish, Γ𝑏𝑐
𝑎 |𝛾 = 0.  

For a geodesic/free-fall trajectory 𝜁, the inertial frame 𝛾 is comoving. Concomitantly, in the 

adapted inertial coordinates, 𝜁𝑎 = 𝑐𝑜𝑛𝑠𝑡. In consequence, the energy-momentum 4-current 

along free-fall trajectories 𝜁 is locally conserved, 𝜕𝑎𝑗
𝑎[𝜁]|𝛾 = 0.    

The lesson to be drawn is this: apparent violations do not evince a real break-down of local 

energy conservation. Nor do they signal that we have neglected some (presumably: 

gravitational) energy contributions. Rather, such “violations” are artefacts of an unphysical 

direction for the 4-current or of adopting non-inertial frames.37 Neither should unsettle us. 

GR’s matter energy-momentum 4-current is free of sinks/sources no less than in CM or SR. In 

these theories, as well, energy can appear not to be locally conserved, when adopting non-

inertial/accelerated reference frames.  

GR and pre-GR theories differ, of course, in their specific inertial structure, i.e. what they posit 

as privileged “natural motion”. I will outline the ramifications that these differences entail for 

                                                           
37 Landau & Lifshitz (1975, p. 283) insist (with neither argumentation nor even explication) that any serious 
candidate for energy must satisfy a continuity equations in all reference frames. I reject this assumption. There 
is nothing wrong with (and hence nothing to ameliorate in) an equation that does not take its simplest form in 
non-inertial frames. 
Presumably, what motivates Landau and Lifshitz’s reasoning is Einstein’s (erroneous) interpretation of general 
covariance as an extension of the Relativity Principle, asserting the equivalence of all reference frames (cf. 
Norton,-1985).      
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global energy-momentum conservation shortly (§2.2). But first, it is apposite to discuss GR’s 

local energy-momentum conservation from a different angle, linking it to gravitational energy.  

Following Einstein’s 1916 GR review paper (see Hoefer, 2000, p. 191), 𝜕𝑏𝑇
𝑎𝑏 = −2Γ𝑏𝑐

(𝑎
𝑇𝑏)𝑐  

has occasionally (e.g. Brading & Brown, 2002, p. 17) been dubbed the “response equation”. 

Putatively, it captures the exchange of energy-momentum between gravitational and ordinary 

energy-momentum – gravity’s back-reaction upon matter (e.g. Weinberg, 1972, p.166; 

Hobson et al, 2006, p. 181 or Rindler, 2009, p. 299). I commented already on how focusing of 

the decomposition of 𝑇𝑎𝑏’s vanishing covariant divergence, 0 ≡ ∇𝑏𝑇
𝑎𝑏 = 𝜕𝑏𝑇

𝑎𝑏 + 2Γ𝑏𝑐
(𝑎
𝑇𝑏)𝑐, 

is misleading.38  

One can reformulate the response equation interpretation (REI) more judiciously.39 Recall that 

for generic spacetimes and 𝜉, the covariant divergence of the energy-momentum flux along 𝜉 

does not vanish:  

∇𝑎𝑗
𝑎[𝜉] = 𝑇𝑏

𝑎∇𝑎𝜉
𝑏(≢ 0)   (4). 

(Equivalently, consider the weight-1 density 𝑗̃𝑎[𝜉]: = √|𝑔|𝑗𝑎[𝜉]. The corresponding continuity 

equation with source terms is: ∇𝑎𝑗̃
𝑎[𝜉] ≡ ∂𝑎𝑗̃

𝑎[𝜉] = √|𝑔|𝑇𝑏
𝑎∇𝑎𝜉

𝑏.) According to the 

ameliorated REI, the non-vanishing ∇𝑎𝑗
𝑎[𝜉] reflects the intertwinement of gravitational and 

matter energy-momentum. The presence of sinks/sources in the 4-current on the r.h.s. is 

attributed to the neglect of gravitational energy contributions.  

What is the relationship then between the presence of gravitational energy and the presence 

of sinks/sources? Is the former necessary for the latter? That is: Is gravitational energy the 

(only) reason for the failure of the conservation of matter (non-gravitational) energy-

momentum? This seems implausible. In inertial frames, the r.h.s. of ∇𝑎𝑗
𝑎[𝜉] = 𝑇𝑏

𝑎∇𝑎𝜉
𝑏 

reduces to 𝑇𝑏
𝑎𝜕𝑎𝜉

𝑏. (NB: 𝜉𝑏 still remains an arbitrary vector field.) The latter, however, is not 

straightforwardly related to gravity: one would expect gravitational degrees of freedom to be 

encoded in metric-dependent quantities – not an arbitrary vector field. The fact that the 4-

current 𝑗𝑎[𝜉] contains sinks/sources thus would not be related to gravity, either. (One may 

object to evaluating ∇𝑎𝑗
𝑎[𝜉] in inertial reference frames, as in the latter, gravity has been 

                                                           
38 Due to his own interpretation of GR, Einstein had no such qualms talking about “inertial” and “gravitational” 
components of the decomposition of the geodesic equation (see Lehmkuhl 2010). 
39 The improved form of the REI avoids the objections against its usual form (cf. Read,-2017). 
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“geometrised away”. Rather than an objection, this objection just anticipates the conclusion 

for which I shall ultimately argue.)  

The REI may be understood as taking the presence of gravitational energy to be sufficient for 

the presence of sinks/sources in 𝑗𝑎[𝜉]. Equivalently, by contraposition, ∇𝑎𝑗
𝑎[𝜉] = 0 should 

imply the absence of gravitational energy. Prima facie, this makes sense: if the matter energy-

momentum 4-current contains no sources/sinks, gravitational energy does not contribute to 

the energy balance. 

Does anything more interesting follow from this claim of the REI for gravitational energy? For 

an answer, first recall our earlier discussion that in generic spacetimes energy-momentum 4-

currents along directions other than along inertial trajectories are physically ungrounded: we 

need not extend our realist commitments to such quantities. Now consider a situation (in a 

non-symmetric spacetime) with gravitational energy present. According to the REI (again by 

contraposition), it would follow that ∇𝑎𝑗
𝑎[𝜉] ≠ 0. This is possible (in non-symmetric 

spacetimes) only for 𝜉s that describe non-inertial trajectories or a description in non-inertial 

reference frames. Hence, this non-conserved form of 𝑗𝑎[𝜉] is barred from our realist 

commitment. In short: The REI implies that gravitational energy leads to what would appear 

as a violation of local energy-momentum conservation. Our analysis of inertial motion, 

however, disclosed that the energy-momentum 4-currents that apparently are not locally 

conserved are unphysical. 

Consequently, according to the REI – as a plausible link between gravitational energy and local 

energy-momentum conservation – gravitational energy is an idle wheel: real energy-

momentum – energy-momentum meriting realist commitment – is locally conserved in GR; 

gravity does not contribute to the energy balance equation.  

This renders precise and corroborates Norton’s conjecture that GR, as a theory that 

“geometrises away”40 gravity, also compromises gravitational energy. Like apparent forces in 

                                                           
40 “Geometrising away” must not be confused with “transformed away”. The former denotes the fact that 
gravitational phenomena are not attributed to external forces which deflect particles from their rectilinear 
inertial paths, (see, for instance, Maudlin, 2012, Ch. 6). Rather, they are reconceptualised as manifestations of a 
non-Newtonian/non-Minkowskian inertial structure. “Transforming away”, on the other hand, suggests that one 
could make these effects disappear though a suitable choice of coordinates.  
This is not the case for GR: Consider, for instance, the wave-equation for the Faraday tensor in general-relativistic 
Einstein-Maxwell Theory with external current 𝐽𝑎. It contains gravity-related curvature terms (see Read-et-al.,-
2017 (ms), sect. 2,3 for details): 

∇𝑐∇
𝑐𝐹𝑎𝑏 = 𝐹  [𝑏

𝑑 𝑅𝑎]𝑑 − 𝑅𝑎𝑏𝑐𝑑𝐹
𝑐𝑑 − ∇[𝑏𝐽𝑎].  
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CM, gravity is not a force arising from gravitational interaction, a real entity. In GR, gravity is 

not a force: gravitational phenomena are manifestations of non-Minkowskian inertial 

structure (see Earman & Friedman, 1973, sect. 5; Norton, 2003; Nerlich, 2013).41 GR thereby 

inaugurates a shift in what phenomena are in need of explanations in terms external causes 

(cf. Nerlich, 2013, Ch. 8; Dorato, 2014). Non-vanishing gravitational energy is an artefact of 

bestowing on directions and non-inertial reference frames a physical significance that in truth 

(according to GR’s standard interpretation) they lack.42 (Of course, in generic spacetimes –

those lacking time-like Killing fields – inertial reference frames exist only “locally”: only along 

a single, privileged (geodesic) time-like path can we find coordinate-systems whose time-like 

axes move inertially. I return to this later on in §2.2.) In short: Non-vanishing gravitational 

energy is the result of a spurious realist commitment. I will call this position “eliminativism 

about gravitational energy”. 

Taking seriously GR’s inertial structure, I argued in this section that local energy-momentum 

conservation is valid in GR. Apparent violations in GR for certain reference frames and along 

certain directions merit no more realist commitment than violations of Newton’s Third Law 

by apparent forces. Just as one should be an eliminativist about apparent forces in CM, one 

should be an eliminativist about those energy-momentum 4-currents in generic GR 

spacetimes that are not conserved. To special cases, for which energy conservation does hold, 

we will turn in the next section. 

In pre-GR theories, local energy-momentum conservation gives rise to an invariant global 

conservation law, as well: the energy of matter contained in a closed space-like hypersurface 

remains constant across time.  Does this also hold in GR? 

III.2.2. Local energy conservation in symmetric spacetimes 

In the previous section we considered generic spacetimes, devoid of symmetries. What 

changes with respect to energy-momentum conservation in a spacetime with symmetries?  

                                                           
As tensors, these curvature-containing terms cannot be eliminated through any choice of coordinates.  
41 Cf. Dewar & Weatherall, 2018, esp. section 5 for the similar case of Newton-Cartan-Theory, a geometrised 
version of Newtonian Gravity. I’ll revert to this in Ch. V. 
42 In Dürr (2018), i.e. Ch. II of this thesis, the case of gravitational waves, and the question whether they carry 
energy, is discussed. I argue that the standard arguments supposed to demonstrate that they do are not 
convincing. An alternative account of the spin-up of binary systems is given. Of course, I do not deny the reality 
of gravitational waves and their effects. I only deny that they transport energy. 
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In CM, it is often said (e.g. Landau & Lifshitz, 1976, §6-9) that conservation of energy and 

linear/angular momentum are correlated with the homogeneity of time and the 

homogeneity/isotropy of space, respectively, via Noether’s First Theorem. (The latter remains 

neutral, though, about spacetime symmetries per se.43 Rather, it establishes a link between 

conserved quantities and symmetries of an action under rigid coordinate transformations (see 

Sús, 2017 for a lucid account). But because the relevant coordinates we deal with in CM are 

spacetime coordinates (rather than coordinates on internal spaces, as they occur in gauge 

theories), one may identify rigid transformations with time/space translations.) 

GR’s spacetime symmetries are expressed by means of Killing vectors ξ, the infinitesimal 

generators of a spacetime’s isometries. They are defined via a vanishing Lie-drag of the metric 

along them 

0 = 𝔏𝜉𝑔𝑎𝑏 = ∇(𝑎𝜉𝑏)   (5). 

Killing vectors give constants of motion along a geodesic 𝑥𝑎(𝜏), with the affine parameter 𝜏 :  

𝑑

𝑑𝜏
(�̇�𝑎𝜉𝑎) = 0   (6). 

For energy-momentum 𝑇 𝑏 
𝑎  in particular, the existence of a time-/spacelike Killing field ξ gives 

rise to an energy-momentum 4-current 𝑗𝑎[𝜉] ≔ 𝑇 𝑏 
𝑎 𝜉𝑏 that satisfies a local conservation law,  

∇𝑎𝑗
𝑎[𝜉] = 𝑇𝑎𝑏∇𝑎𝜉𝑏 = −𝑇

𝑎𝑏∇𝑏𝜉𝑎 = −𝑇
𝑎𝑏∇𝑎𝜉𝑏 ≡ 0   (7). 

In inertial frames 𝛾, it even simplifies to a familiar, ordinary continuity equation, 0 ≡

∇𝑎𝑗
𝑎[𝜉]|𝛾 = ∂𝑎𝑗

𝑎[𝜉]. (As in §2.1, the transition to the vector density yields a continuity 

equation in all reference frames: 0 ≡ ∇𝑎(√|𝑔|𝑗
𝑎[𝜉]) ≡ ∂𝑎(√|𝑔|𝑗

𝑎[𝜉]) .) The Killing field thus 

provides a distinguished direction along which energy-momentum has no sinks/sources. The 

status of conservation of an energy-momentum 4- current along a Killing field now is the same 

as that of conservation of the external electric 4-current in Maxwellian electrodynamics. 

Assuming that 𝑇 𝑏 
𝑎  has compact support (or benign fall-off conditions), the 4-current 𝑗𝑎[𝜉] also 

gives rise to an associated invariant, globally conserved “charge” 𝑄[𝜉] ≔ ∫ 𝑑Σ𝑎𝑗
𝑎[𝜉]

Σ
 (with 

                                                           
43 I am grateful to Brian Pitts (Cambridge) for pressing me on this point. 
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the directed infinitesimal volume element 𝑑Σ𝑎):  𝑄[𝜉] doesn’t depend on the choice of the 

Cauchy hypersurface Σ (see, for instance, Padmanabhan, 2010, Ch. 6.5 for details).  

Spacetimes with Killing symmetries thus admit of both, local and global energy-momentum 

conservation. Minkowski space, for instance, possesses ten Killing fields, corresponding to the 

10-dimensional Lie algebra of the Lorentz group. They are associated with conservation of 

energy, linear and angular momentum. The coordinates that are adapted to the time-

/spacelike Killing vectors correlated with energy-momentum conservation are globally 

defined (as opposed to defined only at a point or along a curve, as in the GR case for Riemann 

or Fermi normal coordinates, respectively) inertial coordinates – the familiar 

Cartesian/Lorentz coordinates.  

Contrast the situation with the non-symmetric spacetimes from §2.1. In the absence of Killing 

symmetries 𝜉, the 4-current 𝑗𝑎[𝜉] is source-/sinkfree merely for the only inherently 

distinguished directions available in such spacetimes: 𝜉s along inertial/free-fall trajectories. 

The coordinates adapted to the inertial frames are comoving. They are only defined along the 

inertial paths, not globally. For non-Killing 𝜉, the 4-current 𝑗𝑎[𝜉] does not yield a well-defined 

global charge: different 3+1-decompositions of spacetime imply different charges, each such 

slicing in itself being but an arbitrary conventional choice. In particular, the charges are not 

conserved across time: for a 3+1-decomposition of the manifold into the one-parameter 

family of spacelike hypersurfaces {Σ𝜎: 𝜎}, we have: 

𝑑

𝑑𝜎
∫ 𝑑Σ𝑎𝑗

𝑎[𝜉]

Σ𝜎

≢ 0   (8). 

Generic spacetimes lack Killing symmetries. In particular, in generic spacetimes energy-

momentum fails to be conserved globally. This is illustrated by the “singularly striking 

example” (Schrödinger, 1950, p. 105) of the decrease of energy in a closed bounded universe 

(cf. Misner et al., 1974, §19.4 for technical details): “In simple models the loss [of energy 

contained in a closed 3-volume] can be computed and equals the amount of work the pressure 

would have to do to increase the volume, if a piston had to be pushed back as in the case of 

an adiabatically expanding volume of gas.” However, as Schrödinger stresses, this is a fictional 

account: there is no piston nor any boundary through which energy could escape. Global 

energy conservation just ceases to be valid for the expanding universe.  
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Strictly speaking, such inertial frames, in which energy-momentum is conserved, have zero-

volume. Consequently, matter energy-momentum is conserved only in systems of zero-

volume: prima facie, energy-momentum would thus fail to be conserved in any systems of 

interest. Only point-/line-/plane-/hyperplane-like things could happen in inertial frames, 

precluding nearly everything physicists like to study. Is this an inacceptable consequence, 

tantamount to a reductio?  

Two considerations attenuate the objection. First, many systems of interest, such as the 

chemical energy in my car’s engine, are sufficiently small: relative to the relevant scales, they 

indeed occupy zero-volume. For all practical purposes these systems’ energy-momenta then 

are conserved. (From a Newtonian perspective, their gravitational potential energy does not 

change.) Secondly, also cases of non-negligible energy-momentum non-conservation can be 

handled for most practical purposes – within a certain regime. Notice that the degree of non-

conservation is well-quantifiable. Within some degree of accuracy, and within suitably small 

world-tubes around inertial paths44, it is thus possible to restore the apparent conservation. 

One only needs to add the “missing” bits by fiat: From a Newtonian perspective, these would 

correspond to the Newtonian gravitational potential energy (and its post-Newtonian 

correction) to the non-gravitational energy-balance. But from the more fundamental 

perspective of GR, this potential gravitational energy is fictitious: They are “translations” (or 

projections) of GR phenomena into a pre-GR framework.45 (This fictional “Newtonised” 

account ceases to be available beyond a certain degree of accuracy, and in particular, if the 

curvature effects are very strong even for the relevant volume scales.) 

This brings us back to GR’s gravitational energy. In §2.1-2, we achieved a transparent account 

of local energy conservation in GR. In it, gravitational energy was wholly absent. One may take 

this absence at face value – to the effect that in GR gravitational energy is dispensable.  Some 

will deem this too quick. They may shrug off that absence as irrelevant to the possibility of 

meaningfully defining gravitational energy-momentum. But is there any motivation for that? 

Carroll (2010), for instance, impugns this. With respect to concocting notions of gravitational 

                                                           
44 Essentially, this is the case in the regime in which the PPN-formalism is applicable and in which the Equations 
of Motions (i.e. the field equations for matter/non-gravity) admit of a Lagrangian formulation (cf. Poisson & Will, 
2016).   
45 In [Dürr, 2018a], i.e. Ch. II of this thesis, I clarify in the context of gravitational waves the non-trivial difference 
between violation of energy-momentum and energy momentum depletion via transport (cf. also Weatherall, 
2016, Ch.2, fn 103). 
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energy to restore the violation of global energy conservation, he writes: “the entire point of 

this exercise is to explain what’s going on in GR to people who aren’t familiar with the 

mathematical details”. Yet, it seems fair to countenance that our analysis of energy-

momentum conservation may not have been the right starting point for a search of 

gravitational energy.46 Next, I will therefore squarely examine specific proposals for local 

representations of gravitational energy.  

III.3. Local gravitational energy 

III.3.1. Tensorial hopes? 

Only a year after presenting GR in its full form, Einstein applied to it Noether’s Second 

Theorem (avant la lettre). From the invariance under arbitrary coordinate transformations as 

the general symmetry of GR’s action (modulo surface terms), four continuity equations ensue 

(see Brading, 2005, for historical and mathematical details): 

𝜕𝑏 (√|𝑔|(𝑇𝑎
𝑏 + 𝑡𝑎

 𝑏)) = 0   (9). 

Here, 𝑡𝑎
 𝑏 is a suitable object, called “energy-momentum pseudotensor”. It corresponds to the 

canonical Noether-current for the purely gravitational Lagrangian. (More on this shortly.) It is 

non-unique: due to its anti-symmetry in the upper indices, inserting an arbitrary term of the 

form 𝜕𝑐𝔘𝑎
[𝑏𝑐] into the continuity equation leaves the latter unaffected. 

The most prominent example of a pseudotensor is Einstein’s:  

𝔱𝑎
 𝑏 =

1

√|𝑔|
(−𝔖𝛿𝑎

𝑏 + (
𝜕𝔖

𝜕(𝜕𝑏𝑔𝑐𝑑)
− 𝜕𝑒

𝜕𝔖

𝜕(𝜕𝑏,𝑒𝑔𝑐𝑑)
)𝜕𝑎𝑔𝑐𝑑)   (10). 

Here, 𝔖 = √|𝑔|𝑔𝑎𝑏Γ𝑎[𝑏
𝑑 Γ𝑐]𝑑

𝑐  is the so-called the truncated/“ΓΓ-”Lagrangian.   

Four features of the Einstein pseudotensor stand out, underscoring the continuity with other 

field theories. Firstly, like other energy-momenta from relativistic field theory, it contains 

solely first derivatives of the field variables, 𝑔𝑎𝑏 . Einstein’s pseudotensor is constructed fully 

analogously to energy-momentum in other field theories via the customary Noetherian 

                                                           
46 Suppose one shares this view. That is:  Suppose that one disputes that considerations of energy conservation 
have a direct bearing on gravitational energy. Then, the simple Geroch-Malament argument against a local 
gravitational energy in GR that Dewar & Weatherall (2018, pp. 1) cite is blocked. 
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machinery.47 The reason is that rather than the full Einstein-Hilbert Lagrangian (plus 

nondynamical and boundary terms) we may utilise the ΓΓ-Lagrangian, itself containing only 

first derivatives of 𝑔𝑎𝑏 (see e.g. Hobson et al., 2006, Ch. 19; Poisson, 2004, Ch. 4.1 for technical 

details). Secondly, Einstein’s pseudotensor is index-asymmetric. This mars its utility for 

defining angular momentum. But the shortcoming can be amended by the Belinfante-

Rosenfeld symmetrisation. This technique is familiar from the likewise non-symmetric energy-

momenta in hydro- or electrodynamics. (The technicalities shall not detain us.) Thirdly, 

although the Einstein pseudotensor transforms tensorially only under affine transformations 

(in particular linear coordinate transformations), the continuity equation, 𝜕𝑏(√|𝑔|(𝑇𝑎
𝑏 +

𝔱𝑎
 𝑏)) = 0, is valid for every coordinate system. Fourthly, the weak-field limit reproduces the 

classical potential energy, and yields reasonable “kinetic” terms for gravitational waves (see 

e.g. Maggiore, 2007, Ch. 1-3).  

Yet, GR’s general covariance makes things a little more delicate, when it comes to the 

symmetrisation procedure and the non-tensoriality. Leclerc (2006, p. 3) cautions that the 

Belinfante-Rosenfeld symmetrisation presupposes a distinction of certain coordinates 

inherently not warranted in GR: “The Belinfante procedure relies on the Noether current 

corresponding to global Poincaré (coordinate) transformations. Certainly, any diffeomorphism 

invariant action will also be globally Poincaré invariant, but there is no apparent need, a priori, 

to favor a certain subgroup. In our opinion, this is against the spirit of general relativity. (For 

instance, in [GR] with cosmological constant, the de Sitter subgroup is at least equally well 

justified.)” So, if one requires that a suitable candidate for gravitational energy-momentum 

be index-symmetric, and given that the Belinfante-Rosenfeld symmetrisation exalts certain 

symmetries in an ad-hoc way, then Einstein’s pseudotensor seems just not suitable. One might 

counter: don’t free-fall inertial frames already privilege the Poincaré transformation? 

Consequently, the Poincaré group would seem already distinguished. However, it is not 

obvious in which way that fact is relevant: in inertial (i.e. freely-falling) frames the Einstein 

pseudotensor vanishes, after all. But even if one accepts the argument, it does not address a 

crucial point: all inertial frames are related via local (point-dependent) Poincaré 

transformations relate only inertial frames – not only global (point-independent/rigid) ones.  

                                                           
47 See Schrödinger, 1950, Ch.XI; Dirac,,1975, Ch. 31, 31 for a more convenient expression.  
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The other feature of pseudotensors – their non-tensorial nature – looks even more suspect in 

light of GR’s geometric, coordinate-free spirit. Doesn’t non-tensoriality conflict with the 

invariance one would naturally demand of real objects? Before pursuing this further in §3.2, 

we should enquire into the necessity of pseudotensors:  could pseudotensors for local 

representations of gravitational energy-momentum perhaps be avoided? Several 

authoritative texts (e.g. Misner et al., 1974, p. 467), deny this, pointing to the Equivalence 

Principle. Since gravity, the argument goes, can always be made to vanish locally by adopting 

a free-fall reference frame, gravitational energy can always be “transformed away”.  

However, the argument has a flaw: it presupposes that the alleged gravitational energy-

momentum depends only on first derivatives of the metric. Only they could be “transformed 

away” in suitable coordinates. Why insist on that assumption? Pauli (1981, Ch. 61), for 

instance, voiced his misgivings along the following lines: gravity manifests itself as curvature 

(think e.g. of geodesic deviation), represented by the Riemann tensor, 𝑅𝑎𝑏𝑐
𝑑 = 𝜕[𝑏Γ𝑐]𝑎

𝑑 +

Γ𝑎[𝑐
𝑒 Γ𝑏]𝑒

𝑑 . But the latter is built from up to second derivatives of the metric. Hence, one might 

expect any natural representation of gravitational energy-momentum likewise to be built 

from up to second derivatives of the metric.  

From the Noetherian perspective on pseudotensorial gravitational energy (more on this in 

§3.2), such considerations might appear futile: why seek an object with second derivatives, 

when the terms in the Einstein-Hilbert Lagrangian that contain higher derivatives make no 

difference to the field equations? In response, note that although a Lagrangian approach is 

often fertile, it is unclear whether the Lagrangian is more than a mathematical expedient, 

useful but not physical – comparable to, say, ghost fields in gauge quantum field theory. 

Suppose that one adopts a merely instrumentalist stance towards the Lagrangian, i.e. 

regarding the Einstein-Hilbert Lagrangian as not physical in any direct sense. The co-existence 

of Lagrangians that do not differ merely by surface terms indeed suggests this view (espoused, 

for instance, by Brown & Holland, 2004, pp. 7). Then, independent criteria would be needed 

to make plausible the physical significance of the Einstein pseudotensor. Here, Pauli’s 

considerations would be pertinent – and may be viewed as disfavoring the Einstein 

pseudotensor’s suitability. But suppose, contrariwise, that one did consider the Lagrangian as 

something physical. For instance, the role the action plays, say, in the Feynman path integral 

or its link to black hole horizons (see e.g. Padmanabhan, 2005) might suggest such a realism. 



76 
 

But then it would matter whether one considered the full Einstein-Hilbert Lagrangian, its “ΓΓ”-

version or perhaps a completely different Lagrangian – irrespective of their contribution to 

the field equations (or lack thereof) upon variation. Either way, Pauli’s objection cannot be 

brushed aside lightly. (In Ch. IV, we shall see that canonical energy-momentum associated 

with the full Einstein-Hilbert Lagrangian, which thus includes also 2nd derivatives of the metric, 

suffers from additional problems of its own – grist to the mills of the sceptic of general-

relativistic gravitational energy.) 

Recently, Curiel (2014) closed this loop-hole. There exists indeed no tensor with the natural 

desiderata for representing gravity: apart from the Einstein tensor, no symmetric, divergence-

free, homogeneous (for reasons of dimensionality) rank 2-tensor that vanishes if the 

spacetime is flat (𝑅𝑎𝑏𝑐
𝑑 = 0), can be constructed from up to second derivatives of the metric. 

In fact, Lorentz and Levi-Civita proposed the Einstein tensor, G𝑎𝑏 = R𝑎𝑏 −
1

2
𝑅g𝑎𝑏 (or, for 

reasons of dimensionality, −
1

2𝜅
G𝑎𝑏) as a suitable representation of gravitational energy (for a 

historical account of this proposal, see Pauli, 1981, fn. 350-351; Cattani & DeMaria, 1993, esp. 

sect. 5-11). We now turn to this proposal. 

At first blush, it looks attractive. First, the Einstein tensor is a bona fide tensor. Secondly, it 

also obeys a bona fide covariant conservation law: the contracted Bianchi identity, ∇𝑏𝐺
𝑎𝑏 ≡

0. The attendant total energy-momentum 𝔗(𝐿𝐿𝐶)
𝑎𝑏 ≔ −

1

2𝜅
𝐺𝑎𝑏 + T𝑎𝑏,  satisfies both an 

ordinary and covariant continuity equation, ∂𝑏( 𝔗(𝐿𝐿𝐶)
𝑎𝑏) = ∇𝑏( 𝔗(𝐿𝐿𝐶)

𝑎𝑏) = 0. Thirdly, the 

Einstein tensor is the exact gravitational counterpart of the matter energy-momentum tensor: 

whereas the latter is defined variationally as 𝑇𝑎𝑏 = −
2

√|𝑔|

𝛿

𝛿𝑔𝑎𝑏
(√|𝑔|ℒ(𝑚)), one obtains the 

Einstein tensor (up to a proportionality factor) by replacing the matter Lagrangian by the 

purely gravitational Einstein-Hilbert Lagrangian,  

𝐺𝑎𝑏 ∝
1

√|𝑔|

𝛿

𝛿𝑔𝑎𝑏
(√|𝑔|𝑅)   (11). 

Two objections speak against the proposal: physical implausibility and vacuity, respectively. 

Firstly, consider the Einstein Equations in vacuum. This, on Lorentz and Levi-Civita’s proposal, 

would yield vanishing gravitational energy, 𝐺𝑎𝑏 = 0. But that is counterintuitive: since the 

Einstein tensor is constructed from traces of the Riemann tensor, a solution of the vacuum 
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Einstein Equations has in general non-vanishing Weyl structure. The latter encapsulates 

gravitational radiation (see e.g. Padmanabhan, 2010, pp. 263) for technical details). Prima 

facie one would expect it to possess gravitational energy – contrary to Lorentz and Levi-Civita’s 

proposal. Equally implausibly, it purports that there are no differences between gravitational 

energy in the exterior of a static and, say, charged rotating black hole, respectively: in either 

case, gravitational energy would be zero. 

Besides doubts regarding its physical plausibility, it seems mysterious and contrived that, on 

Lorentz and Levi-Civita’s proposal, any matter energy-momentum is exactly counterbalanced 

by gravitational energy. That is: in all possible spacetimes, the total energy always vanishes, 

−
1

2𝜅
𝐺𝑎𝑏 + 2𝜅𝑇𝑎𝑏 = 0. It is elusive what positing such an entity would help explain. In his 

correspondence with Levi-Civita, Einstein (1917, cited in op. cit., pp. 77) made this point. In a 

letter to him, Levi-Civita concedes that his proposal is indeed sterile in that “[…] the energy 

principle would lose all its heuristic value, because no physical process (or almost none) could 

be excluded a priori. In fact, [in order to get any physical process] one only has to associate 

with it a suitable change of the [gravitational field]”.   

In short: Lorentz and Levi-Civita’s proposal lacks physical informativeness. The charge is 

aggravated by the fact that the contracted Bianchi identities, ∇𝑏𝐺
𝑎𝑏 ≡ 0, as mathematical 

identities, barely count as conservation laws in any substantive sense. (By contrast, ∇𝑏𝑇
𝑎𝑏 =

0 requires a certain coupling of the metric to the matter fields. It thus hinges on physically 

substantive assumptions (for details, see Read et al., 2017 (ms), sect. 3.) 

In consequence, Curiel’s theorem seems to entail that local notions of gravitational energy will 

invariably conjure up non-tensoriality.48 In the following, I will focus on pseudotensors, the 

most common type of non-tensorial objects.  

                                                           
48 An interesting tensorial proposal, following Møller (reported in Goldberg, 1980, p. 477), is worth mentioning. 
For GR’s truncated Einstein-Hilbert Lagrangian, Noether’s theorem entails, as we’ll see in §3.2, the conserved 
total current:  

−2√|𝑔|𝐺𝑏
𝑎𝜉𝑏 + 𝑡  𝑎 = 𝜕𝑏𝑈

[𝑎𝑏], 

where 𝜉𝑚(𝑥) is an arbitrary function. The non-tensorial Einstein pseudotensor – prima facie, the most natural 
candidate for representing gravitational energy – is obtained for constant 𝜉𝑚s, and the Einstein super-potential 

𝑈𝑛𝑠 =: 𝜉𝑚𝑈𝑚
𝑛𝑠 = 2√|𝑔|𝜉𝑚 (𝛿𝑚

𝑠 {
[𝑠
𝑡𝑟
} 𝑔𝑡]𝑟 − 𝛿𝑚

𝑛 {
[𝑠
𝑡𝑟
} 𝑔𝑡]𝑟 + 𝑔𝑟[𝑛 {

𝑠]
𝑚𝑟
}) =:√|𝑔|𝜉𝑚Ξ𝑚

𝑛𝑠. 
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III.3.2. Pseudotensors 

The Noetherian framework is the royal road to gravitational energy in GR. Field-theorists (e.g. 

Weinberg 1972) may feel inclined to treat GR like any other Lagrangian theory. Regarding the 

technical procedure, they may well be right (see the standard field-theoretical treatments in 

Horský & Novotný, 1969, or Barbashov & Nesterenko, 1983; for other possible advantages of 

their perspective, cf. Pitts, 2016ab). (I will ignore potential issues with diverging action 

integrals: the metric need not fall-off “nicely”.) But interpreting the results is more subtle. 

Goldberg (1959, p. 319; cf. Horský & Novotný, 1969, pp. 427), for instance, observes: “Clearly, 

the existence of a complex with a vanishing divergence is insufficient evidence for the 

conservation of a physically interesting quantity.” To this I now turn. 

                                                           
At this juncture, one introduces tetrads {𝒆𝐴 = ℎ𝐴

  𝜇
𝜕𝜇: 𝐴 = 0,1,2,3}, i.e. a set of (orthonormal) basis vectors of the 

manifold’s tangent space, 𝑠𝑝𝑎𝑛{𝒆𝐴: 𝐴} = 𝑠𝑝𝑎𝑛{𝜕𝜇: 𝜇} = 𝑇ℳ (for details, see e.g. Aldrovandi & Pereira, 2013, 

Ch. 1). Notice that {𝜕𝜇} here denotes a coordinate basis of tangent space (with Greek letters denoting spacetime 

indices in this footnote from now on). We can now express the Levi-Civita connection coefficients in terms of the 

tetrad components ℎ𝐴
  𝜇

 (see e.g. op.cit., pp. 7), 

{
𝜇
𝜈𝜚} = ℎ  𝜚

𝐴  ∇𝜈ℎ𝐴
  𝜇
, 

the super-potential 𝑈𝜇
[𝜈𝜎] can be given a manifestly covariant form: 𝑈𝜇

[𝜈𝜎] is a (2,1)-tensor density of weight 1. 

As for the Einstein pseudotensor 𝜉𝜇 = 𝑐𝑜𝑛𝑠𝑡., due to the anti-symmetry in the upper-indices the ordinary 
divergence of the Einstein super-potential still yields covariant term: 

𝜕𝜎𝑈
𝜈𝜎 = √|𝑔|∇𝜎(𝜉

𝜇Ξ𝜇
[𝜈𝜎]) = √|𝑔|𝜉𝜇∇𝜎Ξ𝜇

[𝜈𝜎]. 

Plugged back into the current equation above, this yields the Einstein pseudo-tensor: 

𝑡  𝜈 = √|𝑔|𝜉𝜇(2𝐺𝜇
𝜈 + ∇𝜎Ξ𝜇

[𝜈𝜎]). 

This expression is manifestly covariant: it‘s a bona fide vector (of weight-1). Thanks to the transition to GR’s 
tetradic formulation, we have thus overcome the pseudo-tensoriality! The Einstein gravitational energy-stress 
“pseudo“-tensor has become manifestly coordinate-independent. 

This doesn’t satisfactorily solve the problem of general-relativistic gravitational energy, though. First, tetradic GR 
and metric GR are arguably distinct theories: their solution spaces (with tetradic GR’s being restricted to so-called 
parallelisable manifolds – which includes manifolds that have a Lie-group structure, but excludes e.g. all spheres 
other than 𝕊1, 𝕊3 and 𝕊7, or non-orientable manifolds, such as the Möbius strip) and referents (reference frames, 
represented by the set of tetrads, vs. spacetime’s (chronogeo-)metric and inertial/affine structure) differ (cf. 
Combi & Romero, 2018).  

Secondly, the tetradic approach flouts a form of GR’s equivalence principle – “the equality of all (at least inertial) 
reference frames before the laws of physics“: the laws of physics shouldn’t privilege any reference frame (cf. 
Dieks, 1987). Indeed, locally (point-dependent) Poincaré transformed reference frames (represented by sets of 

tetrads) yield the same metric quantities (via 𝑔𝜇𝜈 = 𝜂𝐴𝐵ℎ𝐴
  𝜇
ℎ𝐵
  𝜈 with the (inverse of the) Minkowski metric 𝜂𝐴𝐵). 

But 𝑡  𝜈 isn’t invariant under local Poincaré transformations – only under global (point-independent) Poincaré 
transformations! In this sense, the above approach establishes a well-defined/covariant gravitational energy – 
but at the price of (∞6-times) empirically under-determined “sub-metric“ (i.e. tetradic) surplus structure. 
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Can pseudo-tensorial expressions adequately represent gravitational energy-momentum 4-

currents? With reason, one may challenge this. Two problems afflict pseudotensors: one is a 

problematic coordinate-dependence, the other a danger of arbitrariness/ad-hocness, due to 

ambiguity. While the second problem can be somewhat tempered, this comes at the price of 

trivialising the content of local gravitational energy-momentum.  

The first problem stems from a formal property of pseudotensors: they are invariant only 

under affine transformations. Under more general transformations, pseudotensors are 

coordinate-dependent. Should this disconcert us? Not necessarily: Calling to mind the Kleinian 

conception of geometry, Wallace (2016) recently reiterated that nothing is inherently baneful 

about coordinate-dependent objects. For pseudotensors, however, the coordinate-

dependence is “vicious” (Pitts): in general, the preferred coordinate transformations do not 

pick out the characteristic invariants of the spacetime. The spacetime symmetries do not align 

with (form at least a subgroup of) the pseudotensor’s symmetry group – contrary to what one 

would expect of well-defined objects (Earman, 1989, Ch. 3.4).49 This is highlighted by the fact 

that pseudotensors do not transform like 4-vectors neither under purely spatial 

transformations, 𝑥𝜇 → 𝑥′𝜇 = (𝑥0, 𝑥′
𝑖
(𝑥𝑗)), “which mean nothing more than a mere 

renumbering of points of the three-dimensional configuration space” (Horkský & Novotný, 

1969, p. 431), nor under purely temporal ones,  𝑥𝜇 → 𝑥′𝜇 = (𝑥′
0
(𝑥0), 𝑥𝑖), encoding “a 

continuous change in the rate and setting of the coordinate clock” (ibid.). In this sense, 

pseudotensors require structure absent in a given (non-flat) spacetime.50 

In order both to connect the issue of pseudotensors with our thoughts from §II, and to prepare 

the discussion of another proposal in §3.3, it is rewarding to revisit two historical complaints 

about pseudotensors’ coordinate-dependence (for a detailed account, see Cattani & DeMaria, 

1993). Soon after Einstein’s proposal of his pseudotensor, Schrödinger explicitly computed it 

for an incompressible fluid sphere. He showed that through a suitable choice of coordinates 

one can make the Einstein pseudotensor vanish. Einstein responded by showing that for 

systems of several masses, at least the Einstein pseudotensor cannot be made to vanish 

                                                           
49 Given that the standard pseudotensors are built exclusively from spacetime-geometric quantities (the metric 
and its Levi-Civita connection), it’s natural to expect the pseudotensor to represent a geometric feature. The 
pseudotensors’ lack of invariance under general coordinate changes prevents this: of structures that are intrinsic 
to a geometry one demands such invariance.     
50 In Ch. IV, I’ll elaborate on this: pseudotensors fail to be geometric objects in the formal sense of Anderson 
(1967, Ch. 1.5). 
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everywhere. Reversing Schrödinger’s argument, Bauer subsequently observed that for 

suitable coordinates Einstein’s pseudotensor also allows for even flat space possessing non-

vanishing gravitational energy.  

What to make of these objections? Let’s look at Pitts’ answers to them. According to Pitts 

(2010), Bauer failed to adapt his coordinates to the spacetime theories. But shouldn’t the 

choice of non-adapted coordinates be irrelevant in a generally covariant theory? Isn’t 

evaluating the gravitational energy-momentum flux 𝜒𝑏𝑗
𝑏[𝜂] ≔ 𝜒𝑏𝑡𝑎

𝑏𝜂𝑎 for some observer  𝜒  

and along some direction 𝜂 merely a question of convenience, not of principled importance? 

This casts Pitts’ reply into doubt. For him, everything is as it should be – once one adopts 

privileged, adapted coordinates.  

In §2.1, we identified the distinguished coordinates as inertial coordinates. In flat spacetime, 

these are globally Lorentzian. In them, the metric takes on a constant value everywhere; its 

derivatives vanish. Hence, the pseudotensor is indeed zero. So, Pitts is right in his counter to 

Bauer: adapting the coordinates to the symmetries of flat spacetime resolves Bauer’s 

paradox.51  

What does this reasoning imply for Schrödinger’s objection, i.e. when applied to 

pseudotensors on non-flat spacetimes? From the definition of Einstein’s pseudotensor, it is 

evident already that in inertial (i.e. Fermi or Riemann) coordinates it vanishes: Pitts’ reply to 

Bauer thus trivialises the physical significance of the Einstein pseudotensor – which becomes 

simply zero! 

Pitts gainsays this conclusion. According to him, the vanishing of the Einstein pseudotensor in, 

say, the exterior of a Schwarzschild black hole, when adopting uni-modular quasi-Cartesian 

coordinates, would be worrisome only if it could be made to vanish in a neighbourhood 

(thereby spoiling quasi-locality), or if the Einstein pseudotensor indeed vanished for every 

coordinate system. Neither is the case. More specifically, Pitts avers that there exist infinitely 

many components of gravitational energy (§3.3). Hence, according to Pitts, one need not be 

disquieted by the fact that some components are zero. This retort hinges crucially on Pitts’ 

                                                           
51 The same argument rebuts Read’s remark that, on the (standard) response equation interpretation (see §2.1) 
even in flat spacetime ∇𝑎𝑇𝑏

𝑎 = 0, implies non-conservation of energy for arbitrary coordinates (see Read, 2017). 
In adapted/inertial coordinates of flat spacetime -viz. (global) Lorentz coordinates- ∇𝑎𝑇𝑏

𝑎 = 0 reduces to ∂𝑎𝑇𝑏
𝑎 =

0. 
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own proposal for gravitational energy in GR. Reasons for scepticism about its adequacy will be 

presented in §3.3. Suppose here that the reader shares my scepticism. Then, the reasoning 

we reconstructed for Pitts’ above reply to Bauer undermines his reply to Schrödinger: the 

adapted local inertial coordinates for the Schwarzschild case are indeed uni-modular quasi-

Cartesian. In these coordinates, the Einstein pseudotensor is zero. (Inertial coordinates are 

adapted to free-fall frames: in them, the metric takes on a constant numerical value.)          

Let us dwell a little on the vicious coordinate-dependence. It can become virulent also in 

practice – generalising Schrödinger’s point. For instance, the Landau-Lifshitz pseudotensor –

an alternative to Einstein’s (see below) – yields negative energy densities for Reissner-

Nordström spacetimes, when calculated in quasi-Cartesian coordinates (Virbhadra, 1991). 

Negative energy densities violate the weak energy condition.52 Therefore, they are usually 

(e.g. Malament, 2012, Ch. 2.5) considered unphysical. By contrast, calculations of Einstein’s 

and other pseudotensors give reasonable and mutually consistent results for Kerr-Schild 

Cartesian coordinates. For cylindrical gravitational waves, the pseudotensor exhibits a similar 

coordinate-dependence: their energy-momentum densities associated with the Einstein 

pseudotensor vanish in polar coordinates; Cartesian coordinates, by contrast, yield reasonable 

results (Rosen & Virbhadra, 1993). But what exactly disqualifies quasi-Cartesian coordinates? 

Kerr-Schild Cartesian coordinates are not adapted, either: they are not inertial coordinates. 

The same applies to the cylindrical gravitational wave: the global Cartesian coordinates 

employed there are not inertial. 

The second problem of pseudotensors consists in their non-uniqueness (see Trautmann, 1962, 

esp. sect. 5-5; Anderson, 1967, Ch. 13 for details). An infinite number of possible alternative 

pseudo-tensors exists. None is a priori privileged over the other. We already saw that it does 

not affect the validity of a continuity equation, 𝔗𝑎
  𝑏 ≔ √|𝑔|(𝑇𝑎

𝑏 + 𝔱𝑎
 𝑏),  if we add an arbitrary 

superpotential of the form −𝜕𝑐𝔘𝑎
[𝑏𝑐]:  

𝜕𝑏 (𝔗𝑎
  𝑏 − 𝜕𝑐𝔘𝑎

[𝑏𝑐]) ≡ 𝜕𝑏𝔗𝑎
  𝑏   (12).  

Such an addition amounts to a re-distribution of total energy-momentum. Depending on how 

the metric falls off, this re-distribution is physically significant (especially when we consider 

                                                           
52 That is: For a time-like vector field 𝜉 and the energy-momentum-tensor 𝑇𝑎𝑏  the energy-density relative to 𝜉 is 

positive: 𝑇𝑎𝑏𝜉
𝑎𝜉𝑏 ≥ 0 
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the associated integral/global quantities, i.e. energy-momentum proper – as opposed to the 

energy-momentum densities/fluxes). Note here two salient differences between GR and 

ordinary classical matter theories. First, the metric never has compact support (except, 

trivially, for compact manifolds); in fact, it vanishes nowhere. Classical matter, by contrast, 

typically (i.e. in most admissible physical models – and effectively all physically relevant ones) 

has compact support. Secondly and as a result, for the integrals over the above continuity 

equations to be even well-defined, certain coordinate conditions must obtain: else, the 

prerequisite fall-off behaviour of the metric components (and quantities derived from it) is 

violated. Given the conventionality of coordinate labels, the reliance on coordinate conditions 

is alarming (cf. Russell, 1927, Ch. VII). It stands in marked contrast to the situation of standard 

matter theories. 

Via a choice of a superpotential and the Einstein Equations, one can define arbitrary 

pseudotensors:  

√|𝑔|𝑡𝑎
 𝑏 ≔ 𝜕𝑐𝔘𝑎

[𝑏𝑐] +
1

2𝜅
√|𝑔|𝐺𝑎

𝑏   (13). 

Different choices of superpotentials correspond to different pseudotensors. Einstein’s, for 

instance, follows from von Freud’s choice of the superpotential,   

𝔘𝑎
[𝑏𝑐]

(𝐹) =
1

2𝜅√|𝑔|
𝑔𝑎𝑑𝜕𝑒(|𝑔|𝑔

𝑏[𝑑𝑔𝑒]𝑐)   (14). 

Is underdetermination the issue here? If so, wherein does the situation differ from the non-

uniqueness of energy-momenta in other classical field theories? After all, they too are only 

defined up to a superpotential.  

Consider the so-called “Bergmann form” of superpotentials:  

𝔘[𝑎𝑏]: = 𝔘𝑐
[𝑎𝑏]

(𝐹) 𝜉𝑐(𝐵)    (15). 

Here, 𝜉𝑎 generates a one-parameter group of coordinate transformations whose variations, 

𝛿𝑥𝑏 = 𝜖𝜉𝑏(𝑥) leave the action (quasi-)invariant, with an infinitesimal 𝜖. This one-parameter 

group forms a subgroup of the general continuous group of coordinate transformations. (In 
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other words: we have a theory with local gauge symmetry53 that allows for a non-trivial global 

subgroup. In this case, we can combine Noether’s First and Second Theorem. For details, see 

e.g. Brown & Brading, 2000, sect.5; Brading, 2002, 2005; Ohanian, 2013.) Then, in vacuo (𝑇𝑏
𝑎 =

0) one has purely gravitational (axial-/pseudo-vectorial) energy-momentum 4-current along 𝜉 

as 

√|𝑔|𝑡𝑎[𝜉] = 𝜕𝑏 ( 𝔘𝑐
[𝑎𝑏]

(𝐹) 𝜉𝑐)   (16). 

In the presence of matter (with the associated 4-current 𝑇𝑏
𝑎𝜉𝑏 ≠ 0), we have the total energy-

momentum 4-current along 𝜉, 

𝑗(̃𝑡𝑜𝑡)
𝑎 [𝜉]: = √|𝑔|(𝑡𝑎 + 𝑇𝑏

𝑎𝜉𝑏)   (17). 

It can be re-written via a superpotential, 

𝑗(̃𝑡𝑜𝑡)
𝑎 [𝜉] = 𝜕𝑐 ( 𝔘𝑏

[𝑎𝑐]𝜉𝑏(𝐹) )   (18). 

Due to the asymmetry in the superpotential’s upper indices, the r.h.s satisfies an ordinary 

continuity equation in all coordinate systems 𝜕𝑎𝑗(̃𝑡𝑜𝑡)
𝑎 [𝜉] = 0.  

Consonant with our terminology of §2.1, the total-energy-momentum 4-current 𝑗(𝑡𝑜𝑡)
𝑎  

possesses no sinks/sources.  

Note that the quantities 𝜉𝑐 need not constitute a vector field (Trautman, 1962). (In that case, 

formulating (16) or (18) in terms of a covariant derivative would no longer be well-defined.) 

E.g. choosing them such that the components 
𝜉𝑏𝑔𝑎𝑏

√|𝑔|
   are constants yields an alternative to 

Einstein’s, widespread in astrophysical applications (cf. Poisson & Will, 2016) – the Landau-

Lifshitz pseudo-tensor 𝔱(𝐿𝐿)
𝑎𝑏. (It has the merits of being index-symmetric, 𝔱(𝐿𝐿)

[𝑎𝑏] = 0 and 

built from only 1st derivatives of the metric (Landau & Lifshitz, 1975, §96): 𝔱(𝐿𝐿)
𝑎𝑏 +

√|𝑔|𝑇𝑎𝑏 = 𝜕𝑐 (√|𝑔|𝑔
𝑎𝑑 𝔘𝑑

[𝑏𝑐]
(𝐹) ) . 54) 

                                                           
53 I use the term “gauge symmetry“ here in the sense symmetries relating physically identical states of affairs – 
not in the sense of symmetries of gauge theories in the standard/Yang-Millsian sense (under which GR arguably 
cannot be classified, see e.g. Aldrovandi & Pereira, 2013, Ch. 3.3; Wallace, 2015 for details).  
54 Some authors, e.g. Ohanian & Ruffini, 2013, p. 493, fn 10, question the Landau-Lifshitz pseudotensor’s physical 
significance. They see it compromised by its being a weight 1-density: the Landau-Lifshitz pseudotensor thus 
does not transform correctly under rigid coordinate transformations. 
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All known pseudotensors can be derived from the von-Freud and Bergmann form, including 

Lorentz and Levi-Civita’s proposal (for details, see Goldberg, 1958; Trautmann, 1962, p. 190; 

Horský & Novotný, 1969).  

The freedom to choose a superpotential, with none intrinsically privileged, renders the local 

representation of gravitational energy banefully under-determined. There exist infinitely 

many superpotentials, one for each possible (not necessarily tensorial!) 𝜉𝑏. However, no such 

𝜉𝑏 is inherently privileged in a generic spacetime (with exceptions to be discussed presently): 

each corresponds to a possible “gauge” choice of translations. The gravitational energy-

momentum 4-current 𝑡𝑎[𝜉] ≔
1

√|𝑔|
�̃�𝑎[𝜉] ad-hoc privileges a direction. Equivalently, with each 

choice of a 𝑡𝑎[𝜉] one exalts – by an ad-hoc stipulation – a one-parameter group of coordinates 

transformations, by itself failing to be privileged.55       

This is not merely a sin against GR’s spirit. Different energy-momentum complexes can yield 

different energy distributions for the same gravitational background.56 E.g. the energy for the 

exterior of the Kerr-Newman black hole, determined via Møller’s pseudotensor, equals twice 

the energy, obtained from Tolman’s, Einstein’s or Landau/Lifshitz’s pseudotensor (Virbhadra, 

                                                           
55 A complementary argument can be obtained from the Hamiltonian perspective. (Recall, however, that a 
Hamiltonian framework can’t satisfactorily deal with typical dissipative systems – including gravitationally 
radiating ones.) Together with the Hamiltonian constraints and appropriate coordinate conditions, the 
Hamiltonian takes the form of the surface integral:  

ℋ = −
𝑐4

16𝜋𝐺
∑ ∮ 𝑑𝑠𝛼

𝑖0
(𝜕𝛽ℎ𝛼𝛽 − 𝛿𝛼𝛽 ∑ ℎ𝛾𝛾

𝛾=1,2,3

) .

𝛼,𝛽=1,2,3

 

Here, 𝑑𝑠𝛼  denotes the surface element on spacelike infinity 𝑖0 and ℎ𝛼𝛽 is the spatial metric induced on the 

spacelike hypersurfaces of the 3+1-foliation (see e.g. Poisson,-2007, Ch. 4.2 for technical details). 

Using different Hamiltonian formalisms, this surface integral can be represented in different ways, as volume 
integrals with different integrands: 

• The standard ADM form:  

 ℋ𝐴𝐷𝑀 = −
𝑐4

16𝜋𝐺
∫𝑑³ 𝑥 ∑ (𝜕𝛼𝜕𝛽ℎ𝛼𝛽 − 𝛿𝛼𝛽 ∑ ℎ𝛾𝛾𝛾=1,2,3 )𝛼,𝛽=1,2,3  

• Dirac’s form: 

  ℋ𝐷 =
𝑐4

16𝜋𝐺
∫𝑑³ 𝑥 ∑ 𝜕𝛼 (|𝛾|

−
1

2𝜕𝛽(𝛾𝛾
𝛼𝛽))𝛼,𝛽=1,2,3 ,  

  with 𝛾𝛼𝛽 as the inverse of ℎ𝛼𝛽 and 𝛾 = det(𝛾𝛼𝛽). 

• Schwinger’s form: ℋ𝑆 =
𝑐4

16𝜋𝐺
∫𝑑³ 𝑥 ∑ 𝜕𝛼𝜕𝛽(𝛾𝛾

𝛼𝛽)𝛼,𝛽=1,2,3  

Although the resultant total energies all agree, ℋ𝐴𝐷𝑀 = ℋ𝐷 = ℋ𝑆, the integrands, i.e. gravitational energy 
densities, differ non-trivially. Schäfer-(2014, p. 17) concludes that “the notion of gravitational binding energy 
density has no physical or observational meaning.” 
56 This does not seem to be the rule, though (Multamäki-et-al.,-2008). 
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1990).57 The ambiguity thus threatens the well-definedness of gravitational energy-

momentum.  

 

By contrast, the freedom in the choice of superpotentials is (in most cases) benign in pre-GR 

theories. Firstly, due to the compactness of the support of matter fields and suitable fall-off 

conditions, it doesn’t affect the values of the corresponding Noether charges. Secondly, the 

spacetime settings of pre-GR theories contain symmetries. Their associated Killing vectors 

then serve as such a compass for privileged directions. I turn to this now.     

 

One can evade the charge of ad-hoc privileging arbitrary directions by attending to those 

directions that are inherently privileged. (Recall §2.) Consider first symmetric spacetimes. 

Here, the directions along Killing field 𝜉𝑏are privileged. 

 

For such spacetimes, Komar (1959) arrived at the following expression for the superpotential: 

 

𝔘[𝑎𝑏][𝜉] =
1

2𝜅𝐾 𝜕𝑏(√|𝑔|∇
[𝑎𝜉𝑏])   (19). 

 

The resulting total 4-current (weight-1 density) reads: 

  

𝐽(𝑡𝑜𝑡)
𝑎 = √|𝑔|(𝑡𝑎[𝜉] + 𝑇𝑏

𝑎𝜉𝑏) = 𝜕𝑏( 𝔘
[𝑎𝑏]

𝐾 )   (20). 

 

Thanks to its anti-symmetry, Komar’s superpotential can be re-written explicitly as a genuine 

tensor density of weight one:   

𝜕𝑏(√|𝑔|∇
[𝑎𝜉𝑏]) = √|𝑔|∇𝑏(∇

[𝑎𝜉𝑏])   (21). 

Consequently,  𝐽(𝑡𝑜𝑡)
𝑎 =

1

√|𝑔|
𝐽(𝑡𝑜𝑡)
𝑎  is indeed a genuine vector. It is covariantly conserved: 

0 = 𝜕𝑎𝐽(𝑡𝑜𝑡)
𝑎 = √|𝑔|∇𝑎𝐽(𝑡𝑜𝑡)

𝑎    (22). 

Given that ∇𝑎(𝑇𝑏
𝑎𝜉𝑏) = 0, it follows that also the gravitational energy-momentum 4-current 

𝑡𝑎[𝜉], too, is a genuine vector that is covariantly conserved, ∇𝑎𝑡
𝑎[𝜉] = 0.  

                                                           
57 The energy distributions of the Einstein and Møller pseudotensor differ also for the deSitter, the Schwarzschild 
solution, the charged regular metric, the stringy charged black hole and Gödel-type spacetimes (Gad,-2004, p. 
2). 
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We can evaluate the gravitational 4-current,  

𝑡𝑎[𝜉] =
1

√|𝑔|
(𝜕𝑏( 𝔘

[𝑎𝑏][𝜉]𝐾 ) − √|𝑔|𝑇𝑏
𝑎𝜉𝑏)   (23) 

by harnessing the Killing property ∇(𝑎𝜉𝑏) = 0:  

𝑡𝑎[𝜉] = −
1

𝜅
□𝜉𝑎 − 𝑇𝑏

𝑎𝜉𝑏   (24). 

Here, □ ≔ 𝑔𝑎𝑏∇
𝑎∇𝑏 denotes the d’Alembert operator. 

 

However, neither term making up this 4-current is suitably connected with gravitational 

degrees of freedom to represent local gravitational energy-momentum. Consider first the 

second term, 𝑇𝑏
𝑎𝜉𝑏 . It is the (conserved) matter energy-momentum flux along the direction of 

the Killing field. As such, it is unrelated to gravitational degrees of freedom.  

The first term, □𝜉𝑎 is related to gravitational degrees of freedom via the identity, holding for 

all Killing fields (e.g. Padmanabhan, 2010, p. 220) 

  

∇𝑏∇𝑎𝜉𝑐 = 𝑅𝑑𝑏𝑎𝑐𝜉
𝑑    (25). 

Contraction yields  

□𝜉𝑎 = 𝑅𝑏
𝑎𝜉𝑏    (26). 

So, albeit indeed related to gravitational effects (taken here to be represented by curvature 

effects), the first term is too coarsely related to gravitational effects: in particular, it ascribes 

to all matter-free regions of any arbitrary spacetime the same value: zero. This seems 

counterintuitive. (Notice that with (25), the r.h.s. of equation (24) is nothing but −
1

𝜅
(𝑅𝑏
𝑎 +

𝜅𝑇𝑏
𝑎)𝜉𝑏. Hence, due to the Einstein Equations, 𝑡𝑎[𝜉] ≡ 0.) 

In conclusion, for symmetric spacetimes, Komar’s candidate for gravitational energy-

momentum turns out not to be related in the right way to gravitational degrees of freedom.  

   

For non-symmetric spacetimes, the only inherently privileged 𝜉s are those describing inertial 

trajectories. In analogy to the ontological status of apparent forces, I argued earlier that for 

energy-momentum balances we should be realists only about those terms that survive in 

inertial frames ∗ – in particular upon switching to normal coordinates. In the 

adapted/comoving (i.e. normal) coordinates, the Bergmann form trivially vanishes. (Recall: 
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𝑔|∗ = 𝑐𝑜𝑛𝑠𝑡.) Harking back to our thoughts in §2.1, we educe that the resulting gravitational 

energy-momentum 4-current worthy of realist commitment is zero: 

 

𝑡𝑎[𝜉]|∗ = 0   (27). 

 

In summary, for both cases where the arbitrariness objection to pseudotensors could 

seemingly be averted, we wind up with the same conclusion as in §2.1-2: gravitational energy-

momentum is trivialised. With the problem of vicious coordinate-dependence still looming 

without remedy, it thus seems preferable to reject the pseudotensorial approach to local 

gravitational energy-momentum altogether. 

I will therefore move on and inspect two heterodox alternative proposals from the more 

recent philosophical literature. 

III.3. Pitts’ object 

Recently, Pitts (2010) made an astute suggestion: take your pet pseudotensor, and declare 

the totality of its values in every possible coordinate system an infinite-component object sui 

generis, with each component corresponding to the value of the pseudotensor in some 

coordinate system. Since each component satisfies a continuity equation, so does the whole 

object (suitably defining derivatives for such objects). 

Pitts’ object provides thoughtful answers to the criticism of §2.2: by construction, it is (in a 

suitable sense) coordinate-independent. Hence, it extricates gravitational energy-momentum 

from vicious coordinate-dependence. Pitts rightly extols this.  

What about the ambiguity/arbitrariness problem? It persists. If one picks one pseudotensor 

of the Goldberg-Bergmann type and “Pittsifies” it, one obtains indeed a well-defined object. 

Yet, why prefer this pseudotensor over others? In terms of the Von Freud or Bergmann form, 

different choices for a preferred direction for a gravitational energy-momentum are still 

possible. Hence, one can construct again an infinite number of Pitts objects, one for each 

pseudotensor. Furthermore, why not Pittsify other, non-pseudotensorial expressions 

(involving e.g. background metrics or auxiliary connections, each in itself no less suitable a 

priori)? This exacerbates the ambiguity. (Normally, one could plausibly discard such objects as 

parasitic on auxiliary structure that GR simpliciter lacks. Pitts’ strategy deprives one of this 
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argument: in a straightforward formal sense, the object Pittsified over, say, all possible 

auxiliary metrics no longer depends on this auxiliary structure; only each 

coordinate/component (associated with each particular background metric) does. In 

consequence, in order to restrict Pittsification to pseudotensors, Pitts has to summon other 

arguments than he has presented so-far.)        

He might parry by demonstrating that one particular Pitts object, say, the Pittsified Belinfante-

Rosenfeld symmetrised Einstein pseudotensor, is indeed the best candidate. This is certainly 

conceivable: the list of attractive pseudotensors of the Bergmann form can be further whittled 

down by excluding e.g. the Landau-Lifshitz pseudotensors or the Møller pseudotensor (on 

account of its anomalous factor, diagnosed by Katz (1985)). To-date, though, such a 

comprehensive analysis is still pending.  

Should our hopes for uniqueness be dashed, Pitts (2017, sect. 13.4) envisages a way to turn 

this vice into a virtue: as the action contains infinitely many symmetries, it may appear natural 

to allow for infinitely many gravitational energies. Perhaps, Pitts proposes, this proves an 

advantage in the context of black hole thermodynamics: after all, Nester and collaborators 

suggested that different gravitational energies correspond to different free energies and the 

like under different boundary conditions. However, to judge that such considerations buttress 

Pitts’ proposal seems premature: at present, it is controversial (see e.g. Dougherty & 

Callender, 2016; cf. however Wallace, 2017a, Appendix) whether the correspondence 

between black hole thermodynamics and thermodynamics is substantive, rather than a 

speculation based on partial and formal analogies.  

So, let’s assume that the (non-)uniqueness problem defies a satisfactory resolution. In that 

case, Pitts (2017, p. 270) rightly warns against double standards: one must not demand of 

gravitational energy, what non-gravitational energy does not satisfy, either. Pitts points out 

that non-uniqueness poses a problem even for scalar fields (Callan et al., 1970). GR’s 

gravitational energy (Pitts-style) would then appear no worse off than other field theories. But 

this, I think, is misleading: attempts to improve the (Belinfante-Rosenfeld-symmetrised) 

canonical energy-momentum tensor, “[…] are largely ‘ad hoc’ procedures focused on special 

models of field theory, often geared to the needs of quantum field theory and ungeometric in 

spirit” (Forger & Römer, 2003, p.3). Requiring a certain “ultra-locality”, Forger and Römer 

show in a geometric, systematic manner that uniqueness of the energy-momentum tensor 
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can be restored: for non-gravitational matter, it coincides with the variationally defined 

energy-momentum tensor. (For its gravitational counterpart, the Einstein tensor, this leads us 

back to Lorenz and Levi-Civita’s proposal of §3.1.) Of course, Forger and Römer’s result can 

scarcely lay claim to a proof from indubitable first principles. If thus one regards it as little 

more than a stipulation, it would be unfair to decry Pitts’ proposal as wanting for its inability 

to solve the uniqueness problem: nobody who champions some realism for gravitational 

energy in GR has solved it. The main thrust of my critique of Pitts’ proposal in this section then 

could therefore only be twofold. First, to question some of Pitts’ claims that his proposal 

provides any particular advantage. This might eventually turn out to be true, but at present, 

more work needs to be done. Secondly, I happily grant Pitts’ proposal the status of the most 

promising avenues for realists about gravitational energy. Hence, if even it suffers from grave 

problems – so much the better for eliminativism. 

I close with two considerations, both revolving around the physical significance of Pitts’ object. 

First: Doesn’t Pitts owe us an argument why his object should be considered physically 

meaningful? Analogously, we could Pittsify, say, the electromagnetic potentials of a system: 

gather the totality of all its possible gauges into one formal object. Is this artificial seeming 

Pittsified 4-potential physically meaningful, or even useful? I am not sure. By the same token, 

I am not aware of any theoretical or practical context in which physicists ever calculate infinite 

numbers of energies. 

Pitts could respond: wherever gravitational pseudotensors are useful, his proposal affords a 

coherent interpretation of such pseudotensors. Let’s consider three more concrete forms of 

this argument, related to an interpretation to the Noether Theorems, the equivalence with 

the Einstein Equations, and Anderson’s framework of geometric objects, respectively. 

The first can be cashed out as the ability of Pitts’ strategy to provide an intelligible 

interpretation of Noether’s Theorems for GR. It gives what seems the natural answer to the 

question of how many conserved energies there are in GR, namely: infinitely many – 

corresponding to infinitely many possible rigid time translation symmetries. But the argument 

is not entirely compelling: why should the Noether Theorems be in need of a physical 

interpretation? Whether one thinks they do, depends on one’s willingness to regard the 

Lagrangian as physical. This is controversial. Arguably, it is more natural to regard the 

Lagrangian merely as a computational prop. The Noether machinery is only a tool to 
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conveniently derive continuity equations. Their validity, however, does not presuppose 

anything from the Noetherian framework: they follow from the field equations alone.58       

A second variant of the argument focuses on the interpretation of these continuity equations. 

Pitts reminds us of Anderson’s observation that the totality of continuity equations of all 

possible pseudotensors is equivalent to the Einstein Equations: surely, one may be tempted 

to conclude, since the latter are physically meaningful, so is the equivalent totality of 

continuity equations, i.e. the local conservation law for the corresponding Pitts object. At least 

for the time being, I want to resist that temptation. Should one infer from the equivalence of 

Feynman’s path integral formalism with standard quantum mechanics that their paths 

equipped with their complex amplitudes provide a coherent interpretation of quantum 

mechanics? This would be too quick (Zeh, 2011). Likewise, one may challenge that a concept’s 

computational utility on its own suffices to warrant the kind of realism that underlies Pitts’ 

reasoning. Compare: It is at least controversial whether to include the quantum potential 

amongst the ontology of Bohmian Mechanics – despite its utility in many applications, such as 

the semi-classical approximation schemes (see e.g. Goldstein, 2017, sect. 5 for details). 

The third and last worry about the significance of Pitts’ object consists in some discomfort one 

may feel about the expressly non-geometric nature of Pitts’ object: how does such a non-

geometric and non-tensorially representable object fit into a geometric, local field theory? 

Pitts replies: if Anderson’s standard formal framework of geometric objects (with a finite 

number of components) cannot accommodate gravitational energy, but the latter is a good 

idea, seek an alternative framework that encompasses also non-geometric objects! To me it 

seems more cautious to resolve this conflict in favour of the framework of geometric objects: 

If forced to choose between a well-established, useful “global” ontological framework and my 

hunches about one quantity whose meaningfulness has conceptually already been called into 

question, I prefer to sacrifice the latter.            

                                                           
58 To the extent that Pittsification is touted as a natural reading of Noether’s (First) Theorem, another challenge 
looms. As Brown (2020) emphasises, the modern version of Noether’s theorem doesn’t establish a one-to-one 
map between (quasi-)symmetries in the action and conservation laws, “but between suitably identified 
equivalence classes of both“ (ibid. p. 10, see also for further details of this equivalence class). Hence, a “natural 
reading of Noether’s Theorem“ should yield full Pittsification, i.e. realism about an equivalence class of Pittsified 
objects. (Here, the equivalence class would consist of all Pitts objects that belong to the same equivalence class 
of conservation laws that figure in the modern Noether map.) This further quotienting out may further increase 
the impression that Pitts‘ proposal is tainted by artificiality. 
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In summary: While interesting and promising, Pitts’ object leaves questions crucial for its 

physical significance unanswered.  

III.3.4. The cosmological constant 

According to its standard interpretation, one construes the cosmological constant Λ as 

vacuum energy. Based on this standard interpretation, Baker (2004, sect. 4.2) raised the 

following question: if Λ is the energy contribution from empty space-time, shouldn’t 𝑇𝑎𝑏
(Λ)
≔

−
Λ

2𝜅
𝑔𝑎𝑏 count as a natural candidate for gravitational energy-density? Not only does 𝑇𝑎𝑏

(Λ)
 play 

the functional role of a (negative) energy density of a perfect “cosmic fluid”, composed purely 

of matter-free spacetime, but due to metric compatibility, it even satisfies a conservation law, 

∇𝑏𝑇𝑎𝑏
(Λ)
= 0. 

Three reasons militate against Baker’s proposal. First, the Einstein Equations with a 

cosmological constant, 𝐺𝑎𝑏 + Λ𝑔𝑎𝑏 = 2𝜅𝑇𝑎𝑏𝜅, are a minimal extension of Einstein’s original 

GR, obtained from adding a constant to the Einstein-Hilbert Lagrangian. Hence, for standard 

GR, in which the cosmological constant is absent/zero, the gravitational energy would 

identically vanish. This trivialises gravitational energy. Secondly, what is really meant by 

interpreting Λ  as vacuum energy? On one common view, this vacuum energy refers to the 

sum of the energy fluctuations of the quantum mechanical ground state.59 Λ thus is not energy 

of “empty space”. Rather, it is the zero-point energy of an all-pervasive quantum field, i.e. 

attributable to matter. Lastly, although  𝑇𝑎𝑏
(Λ)

 plays the functional role of an energy density, 

nothing compels us ascribe it to the r.h.s. of the Einstein Equations, as a source: no less would 

we be licenced to ascribe it to the l.h.s., where Λ could simply serve as some parameter of the 

“gravitational field strength functional”60, 𝐺𝑎𝑏Λ [𝑔𝑎𝑏] ≔ 𝐺𝑎𝑏 + Λ𝑔𝑎𝑏 – a status comparable 

                                                           
59 This interpretation of Λ displays a discrepancy between the quantum field theoretical predictions and 
cosmological observations by roughly 120 (!) orders of magnitude (see e.g. Carroll,-2000; cf. Rugh & Zinkernagel, 
2000). 
But even as a non-fundamental/effective, purely phenomenological description the cosmological constant 
admits of an interpretation as a matter parameter, characterising a perfect cosmic fluid with equation of state 

parameter 𝓌 =
𝑝

𝜚
= −1. 

60 By that I mean the following. Construe both sides of the Einstein Equations as functionals of the metric (as well 
as, for the energy-momentum tensor, the matter fields), 𝐺𝑎𝑏[𝑔𝑎𝑏] = 2𝜅𝑇𝑎𝑏[𝑔𝑎𝑏; Ψ]. (Recall that 𝑇𝑎𝑏  depends on 
𝑔𝑎𝑏 , see Lehmkuhl, 2010 for an analysis.) The Einstein Equations codify how the matter fields and the metric 
interdepend (Nerlich, 2013, Ch. 9): together with initial data, they determine (some part of) the dynamics of the 
metric. (Recall that the Einstein Equations constrain, but don’t fix the trace-free part of the Riemann tensor, the 
Weyl tensor.) The functional on the r.h.s., 𝑇𝑎𝑏[𝑔𝑎𝑏; Ψ], plays the role of a source density, analogously to the 
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with parameters featuring in other non-linear theories, e.g. the soliton equation. Should one 

indeed interpret Λ as a property of spacetime itself, then via a contraction of the Einstein 

Equations (in vacuum) it is easily seen to equal scalar curvature of spacetime, unperturbed by 

matter: Λ = 4R. This contradicts what one would expect of a suitable notion for gravitational 

energy: it’s too coarse-grained; it would not yield any (intuitively expected) contributions from 

gravitational radiation (encoded in Weyl structure, a part of the Riemann curvature not fixed 

by the Einstein Equations, see e.g. Padmanabhan, 2010, Ch. 5.3.3). Furthermore, the proposal 

does not reduce to the potential energy of Newtonian gravity.     

In conclusion, at best, Baker’s interpretation of Λ as gravitational energy lacks plausibility; at 

worst, it rests on a conflation of classical and quantum vacuum.     

III.4. Summary and conclusion 

We started the preceding analysis by investigating conservation of energy-momentum in 

generic, non-symmetric spacetimes. Considerations of the priority and explanatory distinction 

of inertial frames led us to restrict our realist commitments in energy-momentum balances to 

the terms retained after an evaluation in inertial frames and the adapted coordinates. We 

found that the matter energy-momentum 4-currents along the inherently preferred directions 

in such non-symmetric spacetimes (viz. along inertial trajectories) possess no sinks/sources. 

Whilst thus matter energy-momentum is conserved locally, globally it is not: the energy-

momentum contained in an observer’s spacelike hypersurface varies in time.  

In symmetric spacetimes, the matter energy-momentum 4-current along their Killing fields is 

conserved both locally and globally: the associated “charges” are independent of the choice 

of space-like hypersurfaces.  

Non-trivial local gravitational energy-momentum did not arise in these considerations: it 

turned out to be an idle wheel in the context of matter energy-momentum conservation. This 

inspired the working hypothesis that gravitational energy-momentum is eliminated in GR: 

                                                           

particle current, 𝐽𝐴
𝑎: =

𝛿𝐼𝑝

𝛿𝐴𝐴
𝑎 , (say, fermions) of a Yang-Mills field 𝐴𝐴

𝑎 and interaction Lagrangian 𝐼𝑝, (Szabados, 2012, 

sect. 3.1.2). The functional on the l.h.s., 𝐺𝑎𝑏[𝑔𝑎𝑏] plays the role of a field-strength functional, with the metric as 
the “field strength”. 
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analogously to apparent forces in CM, it is reduced to representational artefacts conjured up 

by physically unprivileged descriptions.  

Subsequently, we scrutinised proposals for local gravitational energy-momentum. 

Nontensorial expressions are inevitable. The discussion focused on pseudotensors, as they 

emerge naturally from generalisations of Noether’s Theorems, applied to GR’s purely 

gravitational Lagrangian. Pseudotensors face two main problems: first, a mismatch between 

the spacetime symmetries and the symmetries that their preferred coordinates pick out, and 

secondly an ambiguity that threatens to introduce arbitrariness/ad-hocness. The latter worry 

can be allayed – but only at the price of trivialising the gravitational energy-momentum 4-

current. These issues suggest that one abandon also the pseudotensorial route to local 

gravitational energy-momentum.  

As a way out, we considered Pitts’ strategy to define an infinitely many component object, via 

the totality of all possible pseudotensors. Whilst addressing the issue of vicious coordinate-

dependence, Pitts’ proposal provided no satisfactory answer to the problem of arbitrariness. 

Its physical significance remains doubtful.  

Eventually, we examined and discarded Baker’s proposal of the cosmological constant as a 

candidate for local gravitational energy.   

GR forces us to revise (i.a.) two notions, central to pre-GR hunches. First, global energy-

momentum conservation becomes a contingent fact, dependent on the contingent 

symmetries of the spacetime. Secondly, local gravitational energy-momentum is eliminated: 

it is no longer a meaningful physical quantity.61 In a sense, it has been geometrised (or rather: 

“inertialised”) away.   

This verdict is largely in agreement with the “orthodox” GR literature (e.g. Pauli, 1981, p. 177; 

Weyl, 1923, p. 273; Eddington, 1923, p. 137). Even Einstein (1918, in: Gorelik, 2002, p. 25), 

despite initially advocating his pseudotensorial approach, ultimately conceded that “(t)hus […] 

we come to ascribe more reality to an integral than to its differentials.” Others (e.g. Weyl, 

1923, p.273; Wald, 1984, p. 70, fn 6) concurred: can we reserve a realist commitment only for 

                                                           
61 NB: Stephani (2004, Ch. 28.4) goes even a step further: he disputes that energy, gravitational or otherwise, 
ceases to be fundamentally meaningful in GR. Accordingly, the issue of its conservation becomes moot. I baulk 
at such a radical conclusion, confining eliminativism to a more conservative eliminativism about gravitational 
energy alone.   
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the global (integral) notions of gravitational energy-momentum? But this is a question for 

another chapter. 
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This chapter: 

We considered and rejected various proposals for local representations for gravitational 

energy: locally, gravitational energy – like the gravitational force – seems indeed to have been 

“geometrised” (or rather: “inertialised”) away. Conservation of non-gravitational matter 

seems to hinge on whether the spacetime has symmetries.   

 

The next chapter: 

Can we formulate the challenges for local gravitational energy a bit more precisely? And what 

about global notions? Albeit perhaps not fundamental, could gravitational energy be 

meaningfully defined as a higher-level concept (like “neuron” or “anteater”), useful and 

worthy of a realism of sorts under certain circumstances? 
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IV. Against ‘Functional Gravitational Energy’ 

 

Abstract: 

This chapter revisits the debate between realists about gravitational energy in GR (who opine 

that gravitational energy can be said to meaningfully exist in GR) and anti-

realists/eliminativists (who deny this). In particular, I’ll extend the previous chapter’s analysis 

to global/integral notions of gravitational energy. I re-assess the arguments underpinning 

Hoefer’s seminal eliminativist stance, and those of their realist detractors’ responses. A more 

circumspect reading of the former is proffered that discloses where the so far not fully 

appreciated, real challenges lie for realism about gravitational energy. I subsequently turn to 

Lam and Read’s recent proposals for such a realism. Their arguments are critically examined. 

Special attention is devoted to the adequacy of Read’s appeals to functionalism, imported 

from the philosophy of mind.  

Key words: gravitational energy, energy conservation, General Relativity, functionalism, idealisations vs. 

approximations, GR-exceptionalism  
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IV.1.  Introduction 

This chapter scrutinises Read’s recent claim that a so-called functionalist strategy can support 

realism about gravitational energy in General Relativity (GR) − the view that GR possesses local 

and global gravitational energy-stress in a robust physical sense (at least within a certain class 

of models). According to Read (2018), such a realism chimes with, and sanctions the use of, 

gravitational energy common in astrophysical practice.  

Read’s arguments, I’ll argue, aren’t convincing – at least not as they stand. In particular, not 

only is gravitational energy explanatorily dispensable in GR – as Read admits. It’s, I submit, a 

tenuous explanans.  

In what follows, I pursue three goals: 1. to critique Read’s proposal, 2. to plead for anti-realism 

about gravitational energy, and 3. to animadvert upon facile uses of functionalism. 

The first goal is to push back against Read’s realism about gravitational energy: even if one is 

sympathetic to his overall general argument, one may well question that gravitational energy 

satisfies its premises.  

My second goal is indirect: I’ll take up the cudgels for Hoefer’s eliminativism about 

gravitational energy (Hoefer, 2000). Hoefer’s arguments admit of a different, more 

circumspect formulation. Thus re-formulated, they evade Read’s objections. This also brings 

to the fore the more serious difficulties that realists about gravitational energy face. I’ll argue 

that Hoefer’s eliminativism is ultimately a more satisfactory stance than Read’s. 

A third goal is to enhance our understanding of functionalism in the philosophy of physics. §4 

provides a critical discussion of a recent application of functionalism −viz. Read’s. This allows 

us to demarcate more sharply (or, at least, sensitivises us to pitfalls with respect to) what 

functionalist strategies can and can’t achieve – and what suitable contexts for their application 

might be. 

A recurrent theme will be a major, yet somewhat underappreciated question in the extant GR 

literature:62 to what extent is GR special in comparison to, say, electromagnetism or Yang-

                                                           
62 The most notable and insightful exceptions are found in the oeuvre of Pitts, esp. (2016ab, 2017, 2018).  
Kaiser (1998) reviews the historical dialectics between GR exceptionalism and egalitarianism  between 1942 and 
1975.  
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Mills theories? Advocates of an “egalitarian” view downplay this specialness (e.g. Feynman, 

1995; or Brown, 2005). They can rightly point to the – at least, occasional − fertility of such a 

position. (Think, for instance, of spin-2 derivations of the Einstein Equations, see e.g. Pitts, 

2016c, or the clarification of the misinterpretation of the cosmological constant as a mass 

term, Pitts, 2019.) Likewise, egalitarians must be given credit for often exposing double 

standards frequently applied to GR. Contrariwise, advocates of “exceptionalism” affirm GR’s 

privileged status. They accentuate the distinguished explanatory (and, plausibly attendant, 

ontological) status of GR’s spacetime structure (see e.g. Janssen, 2009 (whom I take to extend 

his views on Special Relativity to GR); Nerlich, 2007; 2013). Standard GR is indeed special in 

some regards: conceptually-formally, it differs from our best fundamental theories of matter, 

i.e. Yang-Mills gauge theories (see Weinstein, 1999; Aldrovandi & Pereira, 2013, Ch. 3.3; Teh, 

2014; Wallace, 2018 for details). One major difference is that GR’s fundamental variable is a 

metric – not a connection. From the fibre bundle perspective, another major difference 

consists in GR’s display of so-called soldering: internal (“gauge”) and external (“spacetime”) 

degrees are inextricably linked. (It lies outside of the present thesis’ scope to explore the 

implications and interpretative significance of these peculiarities of general-relativistic 

gravity.)   

One’s realist/anti-realist attitudes towards gravitational energy in GR tend to be fuelled by 

egalitarian/exceptionalist presuppositions. Usually, they remain implicit. It lies outside the 

present chapter’s ambit to adjudicate between GR egalitarianism and GR exceptionalism. 

Instead, I’ll flag where one’s verdict on the force of certain (counter-)arguments in the 

realism/anti-realism debate about gravitational energy hinges on such prior commitments. In 

this regard, I’ll advance the following claim: in terms of realism/antirealism about gravitational 

energy, Read’s functionalism brings nothing new to the table which transcends the realism 

one may already cherish towards gravitational energy. Only if one is already attracted to 

realism about gravitational energy (undergirded by egalitarianism about GR), will one find 

Read’s position attractive, too. It doesn’t furnish, however, any independent arguments for 

such a realism.    

The chapter will proceed as follows. In §2, I’ll introduce the dispute between realists about 

gravitational energy, such as Read, and antirealists, such as Hoefer. The next section, §3, 

hones in on Hoefer’s arguments (§3.1), and Read’s responses to them (§3.2). Both are 
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assessed in §3.3. §4 is devoted to Read’s own realist proposal. I’ll first, in §4.1, reconstruct the 

logical structure of his argument. §4.2 critically evaluates it. Finally, in §5, I’ll outline two 

contexts not considered by Read: non-tensorial global notions of gravitational energy, and 

Ashtekar’s asymptotics programme. 

IV.2. Setting the stage: realism about gravitational energy    

In this section, I’ll delineate the tenets of realism about gravitational energy, as they appear 

in the debate between Read (who advocates it) and Hoefer (who discards it).  

The debate revolves around the following conundrum. GR’s field equations can be derived 

from varying the Einstein-Hilbert action63 

∫𝑑4𝑥√|𝑔| (ℒ(𝑔) + ℒ(𝑚)). 

The purely gravitational Lagrangian ℒ(𝑔) is given by the Ricci scalar, ℒ(𝑔) = 𝑅, or the so-called, 

dynamically equivalent (e.g. Hobson, Efstathiou & Lasenby, 2006, Ch. 19) “ΓΓ" Lagrangian 

ℒ(𝑔) = 2𝑔
𝜇𝜈Γ𝜇[𝜈

𝜆 Γ𝜆]𝜅
𝜅 . (It has the advantage of being only first order, in analogy with 

Lagrangians of other field theories.) ℒ(𝑚) denotes the matter Lagrangian.  

Applying Noether’s 1st Theorem (or a suitable generalisation – what Brown and Brading call 

the “Boundary Theorem”) to this total Lagrangian density, ℒ(𝑚) + ℒ(𝑔), yields a continuity 

equation (see e.g. Barbashov & Nesterenko, 1983 for details): 

𝜕𝑏 (√|𝑔|(𝑇𝑎
 𝑏 + 𝜗𝑎

  𝑏)) = 0. 

Here, 𝑇𝑎
 𝑏 denotes the energy-stress tensor associated with ordinary matter fields. 𝜗𝑎

  𝑏 is the 

canonical energy-momentum associated with the purely gravitational Lagrangian density ℒ(𝑔). 

It’s dubbed the Einstein pseudotensor,  

𝜗𝑎
  𝑏 =

1

√|𝑔|
(−ℒ̅𝛿𝑎

𝑏 +
𝜕ℒ̅

𝜕(𝜕𝑏𝑔𝑑𝑒)
𝜕𝑎𝑔𝑑𝑒). 

                                                           
63 For technical details, see e.g. Poisson (2004), Ch.4. 
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It transforms tensorially only under affine transformations. Hence, its qualifier “pseudo“. 

Despite the Einstein pseudotensor’s non-tensorial nature, the above continuity holds for all 

coordinate systems.  

Given the exactly analogous construction as canonical energy-momentum in other field 

theories, the Einstein pseudotensor is naturally construed as a local (differential) gravitational 

energy-stress density. (Below, I’ll suppress “density” for the sake of readability.) 

In consequence, the above continuity equation is naturally interpreted as local conservation 

of total energy-stress: total (gravitational plus matter/non-gravitational) energy-stress, 𝒯𝑎
𝑏 ≔

𝑇𝑎
𝑏 + 𝜗𝑎

  𝑏 , has neither sources nor sinks. 

Henceforth, I’ll refer to this interpretation of the pseudotensor as ‘’realism about local 

gravitational energy-stress” (REALLOC). I’ll treat it as concomitant with the interpretation of 

𝑇𝑎
𝑏 + 𝜗𝑎

  𝑏 as local total energy-stress. 

Via an application of Gauß’s Theorem, one may now try to convert the continuity equation 

into a conserved global (integral) quantity over a 4-volume. For the integrals to be well-

defined, certain conditions must hold. Preliminarily, I’ll subsume them under the label 

“asymptotic flatness”. More details will follow in §2.1.   

The view that this quantity denotes global total energy-stress and is conserved – attendant 

with the view that the integral over the pseudotensor denotes global gravitational energy-

stress- will be referred to as “realism about global gravitational energy-stress and energy-

stress conservation” (REALGLOB).  

This position is strictly weaker than its local counterpart. Provided one counts a possibly 

divergent integral as a well-defined, but infinite quantity, one can advocate (REALGLOB) without 

(REALLOC), but not vice versa.64 (Such a situation is familiar from other areas. Think, for 

instance, of entropy production in thermodynamics. In, say, a Carnot cycle, entropy 

production 𝛿𝑄𝑟𝑒𝑣 𝑇⁄ , with the reversible heat energy transfer 𝛿𝑄𝑟𝑒𝑣 and temperature 𝑇, is 

defined only up to “thermal gauge transformations”, i.e. exact one-forms. Hence, “locally” 

entropy isn’t well-defined.  Only “globally” it is, i.e. the integral  ∫𝛿𝑄𝑟𝑒𝑣 𝑇⁄ . For a field-

                                                           
64 One may regard this, i.e. (REALGLOB)&¬ (REALLOC), as the orthodox position: Several early authors (e.g. Einstein, 
1918, cited in: Gorelik, 2002, p.25; Eddington, 1923, p.137; Pauli, 1918, §61; Weyl, 1921, §31; Schrödinger, 1950, 
p. 100); Misner, Thorne & Wheeler, 1972, §19-20) reserved realism for global gravitational and total energy-
stress. 
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theoretical example, think of the self-current of Yang-Mills theories, 𝑗𝐴𝜇 = −𝑓𝐵𝐶
𝐴 𝐴  𝜆

𝐵 𝑓𝐶𝜆𝜇 . 

Being explicitly dependent on the connection 𝐴  𝜆
𝐵 , it’s gauge-variant. By contrast, due to the 

sourceless Yang-Mills equations, 𝜕𝜈𝐹
𝐴𝜇𝜈 = 𝑗𝐴𝜇 (with 𝐹𝐴𝜇𝜈 denoting the curvature of the 

connection), the “charge” 𝑄𝐴𝜇 = ∫𝑑4𝑥√|𝜂| 𝑗𝐴𝜇 is gauge-invariant.) 

Hoefer and Read disagree over whether or not to adopt realism about (local and/or global) 

gravitational stress-energy. Read affirms both (REALGLOB) and (REALLOC) in certain contexts; 

Hoefer opposes them without qualification.  What are their respective arguments? 

IV.3. Hoefer’s eliminativism – Read’s response 

In this section, I’ll first review a straightforward reconstruction of Hoefer’s objections to 

gravitational energy, together with his rejoinder that in GR energy conservation should be 

abandoned (§3.1). Subsequently (§3.2), I’ll inspect Read’s responses. They are critically 

evaluated in §3.3.  

The analysis will cast into sharper relief the real problems that (Read’s) realism about 

gravitational energy must address. They’ll play a pivotal role in §4.2.  

IV.3.1 Hoefer’s eliminativism   

In favour of eliminativism about gravitational energy and energy conservation, ¬(REALGLOB) & 

¬(REALLOC), Hoefer mounts three arguments: (H1) coordinate-dependence, (H2) ambiguity, 

and (H3) inapplicability of the conditions that the definability of gravitational energy 

presupposes. 

Hoefer’s first point, (H1), is that realism about energy-stress conservation “goes against the 

most important and philosophically progressive approach to spacetime physics: that of 

downplaying coordinate-dependent notions and effects, and stressing the intrinsic, covariant 

and coordinate-independent as what is important” (pp. 194).  

According to Hoefer, the pseudotensor featuring in (REALLOC) doesn’t comply with this 

precept: “its non-tensorial nature means that there is no well-defined intrinsic ‘amount of 

stuff’ present at any given point” (ibid.). Neither does (REALGLOB) comply - presumably because 

asymptotic flatness, as Hoefer presents it, is formulated via the following coordinate 

conditions:     
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(a) For 𝑟 ≔ √𝑥2 + 𝑦2 + 𝑧² → ∞, the coordinate system must be asymptotically 

Lorentzian, i.e.  𝑔𝜇𝜈 → 𝜂𝜇𝜈 = diag(1,−1,−1, −1). In the interior, it can vary 

arbitrarily. 

(b) The metric must decay sufficiently rapidly: 𝑔𝜇𝜈 → 𝜂𝜇𝜈 + 𝒪(1/𝑟), 𝜕𝑔𝜇𝜈 → 𝒪(1/𝑟²), 

𝜕2𝑔𝜇𝜈 → 𝒪(1/𝑟³).  

Hoefer’s second objection, (H2), (ibid.) attacks the pseudotensor’s ambiguity: it’s not uniquely 

defined. Some elaboration is in order of what Hoefer may have had in mind. The 

pseudotensors are defined only up to a transformation of the form 𝜗𝑎
  𝑏 → 𝜗𝑎

  𝑏 + 𝜕𝑐Ξ𝑎
[𝑏𝑐]. Here, 

Ξ𝑎
[𝑏𝑐] is a so-called superpotential, anti-symmetric in its upper indices (see Trautman, 1965, for 

details). As a result it’s vastly underdetermined, thereby impeding (REALLOC).  

Hoefer’s third argument, (H3), targets (REALGLOB). His thought seems to be that (REALGLOB) 

hinges on realism about the conditions under which it’s well-defined, i.e. asymptotic flatness. 

Hoefer correctly observes that our actual world isn’t asymptotically flat. Realism about 

asymptotic flatness thus is mistaken. This, according to Hoefer, undercuts (REALGLOB).  

Hoefer’s point straightforwardly carries over to (REALLOC). In flat spacetimes, pseudotensors 

are to some extent extricated from their unsettling non-tensorial transformation behaviour: 

in them, Poincaré transformations – i.e. at least a subgroup of linear transformations – are 

distinguished as relating physically equivalent frames. Alas, Hoefer might interject: our 

universe isn’t flat – not even asymptotically. An advocate of (REALLOC) thus has to stomach 

non-tensoriality. 

Based on his diagnosis of coordinate-dependence, ambiguity and anti-realism about the 

formal prerequisites for defining global gravitational energy, Hoefer champions 

antirealism/eliminativism about gravitational energy: we should relinquish the notion. 

Instead, we should just accept that in GR, energy conservation no longer holds.  

How does Read respond to Hoefer’s arguments?  

IV.3.2. Read’s response 

While for Hoefer the above reasons suggest that one abandon (REALGLOB) and (REALLOC), Read 

wants to resist this conclusion. He parries by (R1) rejecting Hoefer’s ban on coordinate-based 

language, (R2) by assuming that the non-uniqueness can be overcome (or, at least, isn’t 
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problematic), (R3) by defending the use of idealisations, and (R4) by baulking at the revisionary 

nature of Hoefer’s eliminativism.       

First, Read takes Hoefer to outlaw the usage of coordinate-dependent notions (H1). Read 

rightly repudiates this as unwarranted (R1). The mere usage of coordinates is unproblematic:65 

“[…] presentations of spacetime theories need not proceed in a coordinate-independent 

manner; rather, spacetime theories may be defined in terms of equations written in a 

coordinate basis and their transformation properties (this is what Brown […] and Wallace […] 

refer to as the ‘Kleinian conception of geometry’), and explanations may be given by appeal 

to those laws, written in a coordinate basis.” On this Kleinian conception, one characterises 

geometry via the class of privileged coordinate systems (see Wallace, 2016 for details). In 

these, the dynamical equations preserve a particular (e.g. simplest) form. Such coordinate-

based characterisations are as coordinate-independent as those not based on coordinates, i.e. 

drawing on intrinsically geometric notions. Prima facie, Read thus effectively wards off 

Hoefer’s first complaint. 

It might even appear that (H1) was unfounded for (REALGLOB) from the outset: while it’s 

popular and expedient to define asymptotic flatness in a coordinate-based manner (e.g. 

Jaramillo & Gourgoulhon, 2010 for a more detailed presentation), this isn’t necessary. Via 

conformal techniques, it’s indeed possible to characterise asymptotic flatness in purely 

geometric, coordinate-free terms (e.g. Geroch, 1972, Ch. 35-38; Wald, 1984, Ch. 11; 

Ludvigsen, 1999, Ch. 12) – as Hoefer demands.  

To Hoefer’s complaint of the ambiguity of pseudotensors (H2), Read responds as follows (R2): 

“There are many distinct but non-equivalent choices for this pseudotensor, based on one’s 

choice of superpotential. Hence […] we are implicitly supposing that a choice has been made 

from the family of possible candidates” (p. 11). (Below, I’ll also consider a different response 

that Read may be read as endorsing.)  

In his third response, (R3), Read rebuts Hoefer’s attack on asymptotic flatness as an 

assumption not applicable to our universe (H3). Read acknowledges: it is “[…] undeniable […] 

                                                           
65 Geometric/coordinate-free formulations are even ill-suited for applications of GR’s initial value problem (see, 
e.g., Isenberg, 2014). 
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that the entire universe is not asymptotically Minkowski” (pp. 16). Yet, according to Read, 

asymptotic flatness is a good idealisation for certain approximately isolated subsystems.66  

Read rightly underscores that “every theory of physics is an idealisation and does not ‘apply 

to the actual world’ in this strong sense” (p. 17). He takes Hoefer to reject asymptotic flatness 

as an ultimately inaccurate assumption. That, however, Read argues, demands too much of 

successful hypotheses for them to earn realist commitments: ultimate exactness is never 

attainable. Rather, Read suggests that this doesn’t curtail the utility of asymptotic flatness as 

an idealisation.   

Read’s final response, (R4), is to avoid Hoefer’s eliminativism due to its “potentially 

undesirable consequences”. On the one hand (R4a), “such a claim would also commit one to 

the statement that there exists no genuine stress-energy conservation law in [Special 

Relativity, SR] – a theory in which the conservation of total stress-energy typically is taken to 

be uncontroversial” (p. 18). On the other hand (R4b), “the advocate of the Hoefer-type view 

is apparently committed to the denial of the claim that gravitational waves and other forms 

of purely gravitational radiation are energetic”. Read avers that this is gratuitously revisionary.  

Do Read’s responses −the legitimacy of coordinate-based language, the implicit supposition 

that the non-uniqueness can be overcome, the legitimacy of asymptotic flatness as an 

approximation, and the rebarbative ramifications of Hoefer’s eliminativism− effectively rebut 

Hoefer’s worries? In the next paragraph, I’ll assess Read’s answers. 

IV.3.3 Hoefer reloaded 

I’ll now critically examine Read’s counters to Hoefer, (R1)-(R4). Each, I submit, misses the more 

subtle points of Hoefer’s critique: (R1) conflates the mere usage of coordinates with a vicious 

coordinate-dependence; (R2) merely voices a hope, not an argument; (R3) ignores the 

                                                           
66 Characterising the domain of applicability of asymptotic flatness as “systems within the world […] considered 
in isolation” (Read, 2018, p. 17) verges on being tautological (cf. Curiel, 2000, pp. 17): one defines a general-
relativistic system as (materially and gravitationally) isolated because its total energy content is conserved; 
otherwise, one would regard it as (at least) gravitationally interacting.  
To avoid this vacuity, I take Read to make the more specific claim that certain subsystems of the universe that 
don’t interact non-gravitationally are approximately asymptotically flat.  
To jump ahead a little: the preceding claim can’t be universally true −as witnessed by textbook FLRW 
cosmologies: their matter sector is modelled by cosmic dust, i.e. a homogeneous, isotropic fluid with negligible 
non-gravitational interactions, see e.g. Hobson, Lasenby & Efstathiou, 2006, Ch. 14.  One therefore ought to 
understand Read’s claim as this: there exists a physically relevant, and empirically well-corroborated class of only 
gravitationally interacting systems that are asymptotically flat. We’ll return to this in §4. 
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distinction between approximations and idealisations; (R4) is in part, both exegetically and 

systematically unwarranted, and in part an appeal to majority consensus.         

Let’s begin with (R1), Read’s rehabilitation of coordinate-based descriptions à la Klein. I deem 

it a red-herring: it’s an infelicity in Hoefer’s presentation of his argument which invites the 

misunderstanding that Hoefer wishes to ban coordinate-based language per se. A more 

disconcerting real issue lurks behind his worry, though: pseudotensors, which figure in 

(REALLOC), are artefacts of conventions; something akin besets the integral over them. 

Read is certainly right in that neither coordinate-relativity nor non-tensoriality need prevent 

us from ascribing an object physical significance. The Levi-Civita connection coefficients, Γ𝜇𝜈
𝜆 =

1

2
𝑔𝜆𝜎(𝜕𝜈𝑔𝜎𝜇 + 𝜕𝜇𝑔𝜎𝜈 − 𝜕𝜎𝑔𝜇𝜈),  attest to that: geometrically, they define a privileged (viz. 

geodesic) path-structure (equivalently, in the language of fibre bundles: they connect the 

fibres of the tangent bundle over different points of the base manifold); physically, they 

encode inertial structure. 

Yet, pseudotensors are plagued by “vicious coordinate-dependence” (Pitts67, 2009, p. 16): 

they pick out preferred coordinates in the above Kleinian sense that don’t align with the 

spacetime symmetries. Equations involving pseudotensors preserve their invariance only 

under affine coordinate transformations. But what distinguishes them in non-flat spacetimes? 

(Recall: In generic spacetimes affine coordinate transformations aren’t preferred in the 

Kleinian sense.) Conversely, how to make sense of the fact that pseudotensors don’t respect 

spacetime symmetries? That is, how to understand the fact that their invariance isn’t 

preserved under spacetime symmetry transformations – in contradistinction to what one 

expects of matter fields (cf. Pooley, 2013)?     

These oddities are highlighted by the fact that pseudotensorial 4-fluxes of gravitational 

energy-momentum, 𝜗𝜇
 𝜈𝜉𝜇 (along the direction of 𝜉) don’t transform like 4-vectors under 

purely spatial, or under purely temporal transformations. But both amount to a merely 

conventional re-labelling of points in space, and continuous change in the rate and setting of 

a coordinate clock (Horský & Novotný, 1969, p. 431), respectively. Neither should impact 

physical quantities – such as energy-momentum fluxes. 

                                                           
67 Pitts propounds a method to construct geometric, infinite-component objects out of pseudotensors (see 
below). Those overcome the vicious coordinate dependence – at least formally. 
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By stressing merely their non-tensoriality, Read downplays the viciousness of the dependence 

of the pseudotensors: they aren’t merely (and, as the Kleinian hastens to add: benignly) 

“frame-relative”; they are viciously frame-dependent. This has its exact counterpart in the 

frame-dependence of non-invariant quantities in SR: the latter don’t represent objective 

features of the world; reifying them leads to the notorious “paradoxes” of SR (see Maudlin, 

2011, Ch. 2; 2012, Ch. 4 for lucid explications). 

It’s instructive to re-phrase the problem: pseudotensors don’t form geometric objects in the 

sense of e.g. Anderson (1965, Ch. 4.13, 1967).68 A geometric object 𝑦 on an N-dimensional 

manifold ℳ is a correspondence 𝑦: 〈𝑝, {𝑥𝜇}〉 → 〈𝑦1, … , 𝑦𝑁〉 ∈ ℝ
𝑁 which associates with every 

point 𝑝 ∈ ℳ and every local coordinate system {𝑥𝜇} around 𝑝 an N-tuple  𝑦 ≔ 〈𝑦1, … , 𝑦𝑁〉 of 

real numbers (the object’s components), together with a definite transformation rule that 

relates the components relative to the original coordinate system, and the components 𝑦′ ≔

〈𝑦′1, … , 𝑦′𝑁〉 relative to a different coordinate system {𝑥′𝜇} around p. The transformation rule 

only involves the object’s components 𝑦, 𝑦′ relative to the coordinate systems {𝑥𝜇} and {𝑥′𝜇}, 

and their Jacobi matrix 𝜕𝑥 𝜕𝑥′⁄  .  

Requiring that the transformation rule depend only on the the components and the Jacobi 

matrix (i.e. 𝑦, 𝑦′ and 𝜕𝑥′ 𝜕𝑥⁄ ) is necessary for the mutual consistency of legitimate coordinate 

systems in the following sense: whenever we can use different coordinate systems, the order 

in which we switch from one to the other them doesn’t matter. This can be stated more 

precisely. Let the transformation rule 𝑇[𝑦, 𝑦′, 𝜕𝑦 𝜕𝑥⁄ , 𝜕𝑥 𝜕𝑥′⁄ ]) for the coordinate 

transformation {𝑥𝜇} → {𝑥′𝜇} depend on, say, 𝜕𝑦 𝜕𝑥⁄ . Consider now a {𝑥′′𝜇} is a third 

coordinate system. Suppose that relative to it, 𝑇[𝑦′, 𝑦′′, 𝜕𝑦′ 𝜕𝑥′⁄ , 𝜕𝑥′ 𝜕𝑥′′⁄ ]) also holds. In 

general, it won‘t follow, however, that 𝑇[𝑦, 𝑦′′, 𝜕𝑦 𝜕𝑥⁄ , 𝜕𝑥 𝜕𝑥′′⁄ ]) is satisfied (for details, see 

Kucharzewski, M. & Kuczma, M., 1964).  

In short: The components of geometric objects in arbitrary coordinates are uniquely 

determined by their components in one coordinate system and the transformations between 

the coordinates.    

                                                           
68 The notion of geometric object objects was standard in differential geometry from the 1930s onward. (It 
shouldn’t be conflated with Anderson’s related programme of analysing substantive general covariance in terms 
of absolute objects, cf. e.g. Pitts, 2006.) 
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By way of example, note that connection coefficients Γ𝜅𝜆
𝜇

 form a geometric object. Under 

coordinate changes, they transform as  

Γ𝜅𝜆
𝜇
→ Γ′𝜅𝜆

𝜇
=
𝜕𝑥′𝜇

𝜕𝑥𝜚
𝜕𝑥𝜎

𝜕𝑥′𝜅
𝜕𝑥𝜏

𝜕𝑥′𝜆
Γ𝜎𝜏
𝜚
+

𝜕²𝑥𝜎

𝜕𝑥′𝜅𝜕𝑥′𝜆
𝜕𝑥′𝜇

𝜕𝑥𝜎
. 

By contrast, consider the vector field 𝑣𝜇. Then, the quantity 
𝜕𝑣𝜇

𝜕𝑥𝜈
 doesn’t form a geometric 

object: under coordinate changes, it transforms as  

𝜕𝑣𝜇

𝜕𝑥𝜈
→
𝜕𝑣′𝜇

𝜕𝑥′𝜈
=
𝜕𝑥′𝜇

𝜕𝑥𝜅
𝜕𝑥𝜆

𝜕𝑥′𝜈
𝜕𝑣𝜅

𝜕𝑥𝜆
+
𝜕𝑥𝜆

𝜕𝑥′𝜈
𝜕²𝑥′𝜇

𝜕𝑥𝜅𝜕𝑥𝜆
𝑣𝜅 . 

That is: The transformation rule exhibits the prohibited dependence on 𝑣𝜅 (rather than 
𝜕𝑣𝜅

𝜕𝑥𝜆
). 

One can indeed straightforwardly verify that in virtue of this dependence, successively 

applying the preceding transformation law to two coordinate transformations, {𝑥𝜇} →

{𝑥′𝜇} and subsequent {𝑥′𝜇} → {𝑥′′𝜇} yields a transformation law, different from the one for 

the coordinate transformation {𝑥𝜇} → {𝑥′′𝜇}.       

In the same sense, being non-geometric objects, pseudotensors are viciously coordinate-

dependent: the transformation rules of pseudotensors – if they are well-defined at all – exhibit 

a dependence on the coordinates employed.69 The consistency condition is violated.  

Geometric objects, however, constitute the standard framework within which physical objects 

of contemporary field theories are couched (see Nijenhuis, 1952; Schouten, 1954; Anderson, 

1967, 1971; Torretti, 1996, Ch. 4.3).70 They ensure that the intrinsic properties of physical 

entities and all relations between them are preserved under general coordinate 

transformations – the mere re-labelling of the manifold points. “Thus the components of a 

geometric object form a natural kind mathematically: they constitute faces of one and the 

same entity by virtue of being interrelated by a coordinate transformation law” (Pitts, 2009, 

p. 610). (Note that this is compatible with the existence of special coordinates, in which the 

physical laws take a particularly simple form.) By contradistinction, the properties and 

relations of entities represented by non-geometric objects are, as it were, sensitive to the 

labels attached to spacetime points. But such labels are usually deemed merely conventional. 

                                                           
69 NB: Generically each pseudotensor has a different (viciously coordinate-dependent) transformation rule. 
70 It’s worthwhile mentioning that Friedmann (1983), in contrast to the cited authors, restricts geometric objects 
to either tensors or connections. Thereby he –unduly – neglects, for instance, tensor densitities of arbitrary 
weight or projective connexions (cf. Pitts, 2006; 2012; Schouten, 1954, p. 301).  
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(Equivalently: Non-geometric objects presuppose more structure – information encoded 

directly in coordinates of the manifold points – than a manifold, standardly construed, 

contains.) Due to their non-geometric nature, the physical significance of pseudotensors, and 

hence the tenability of (REALLOC), thus becomes questionable. 

To be sure, Read could stand by his guns: he might withdraw his allegiance to the geometric 

object programme.71 Suppose that a pseudotensor 𝜃𝑎
  𝑏[〈𝜏, Σ𝜏〉] is only meaningful relative to 

a given coordinate system. Let the latter represent a (3+1)-decomposition (“frame”), 〈𝜏, Σ𝜏〉. 

Relative to a different frame, 〈𝜏′, Σ′𝜏〉 one obtains a distinct object, 𝜃′𝑎
  𝑏[〈𝜏′, Σ′𝜏〉] ≔

𝜃𝑎
  𝑏[〈𝜏′, Σ′𝜏〉]. Vicious coordinate dependence of 𝜃𝑎

  𝑏 now has lost its sting: 𝜃𝑎
  𝑏and 𝜃′𝑎

  𝑏 

represent distinct entities. 

What impedes the interpretation of such frame-relative objects is that no (3+1)-

decomposition is distinguished over any other. To preserve this “frame-egalitarianism”, one 

has two options. The first one is to renounce realism about those 𝜃𝑎
  𝑏[〈𝜏, Σ𝜏〉]s for all possible 

frames. This is tantamount to anti-realism towards pseudotensors. The second option is to 

extend one’s realist attitude to every 𝜃𝑎
  𝑏[〈𝜏, Σ𝜏〉] for all frames. The idea is to lump the totality 

of all 𝑄[〈𝜏, Σ𝜏〉]s for all possible frames, {〈𝜏, Σ𝜏〉}, into one formal object - symbolically:  

Θ ≔ {𝜃𝑎
  𝑏[〈𝜏, Σ𝜏〉]: ∀〈𝜏, Σ𝜏〉}. 

(Think of each 𝜃𝑎
  𝑏[〈𝜏, Σ𝜏〉] as one of the uncountably infinitely many components of Θ.) A 

realist about Θ doesn’t privilege any of its components. Thereby, she respects frame-

egalitarianism.  (Θ is even a geometric object in a slightly relaxed sense.72) Pitts (2009) has 

indeed made this astute proposal.  

                                                           
71 Contra Read’s (2018, §3.1) remark, absent any explicit discussion in his work (to my knowledge), it’s hard to 
say – and possibly a rewarding reconstructive task, integrating his views on coordinates (see e.g. Norton, 1989, 
2002) and interpretation of GR (see e.g. Lehmkuhl, 2014) – whether Einstein himself would have had qualms 
about non-geometric objects. While he repeatedly objected to the requirement that all meaningful objects be 
tensorial, that view is, as we saw, compatible with an insistence on geometric objects. Indeed, Torretti (1996, p. 
316, fn1) views Einstein’s insistence on a “definite transformation rule” as essentially an endorsement the 
geometric object framework. (This is compatible with the passage, cited by Read (fn 22), in which Einstein 
defends his pseudotensor against his colleagues’ complaint. Therein, Einstein (1918, p. 449) critiques their view 
that “all physically significant quantities can be understood as scalars and tensor components” (my translation). 
It’s not clear, however, that Einstein fully understood the non-geometric nature of his pseudotensor (avant la 
lettre). Yet, later on (p. 452) in the cited text, Einstein seems to concede some unease about his pseudotensor: 
“[…] we thus come to ascribe more reality to the integral than to its differentials” (my translation). I thank James 
Read for pressing me on this.)   
72 Usually (e.g. Trautman, 1965, p. 85 or Anderson, 1967, p. 15) one considers only geometric objects with a finite 
number of components.    
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Here, we needn’t arbitrate between the anti-realist first, or the realist second option. It’s clear, 

however, that at this stage (REALLOC) is staked on the plausibility of Pitts’ proposal. Whether 

the latter is persuasive remains to be seen (cf. Curiel, 2018, fn 27; Dürr, 2018a, §3.3, i.e. Ch. 

III.3.3 of this thesis, for a critique). Read, anyway, stays silent on the matter. (Plausibly, a 

defence of realism about Pitts’ proposal deploys a double strategy akin to Read’s: 1. to appeal 

to scientific utility to licence realist stance towards it, and 2. to appeal to similarities with pre-

relativistic notions of gravitational energy in order to identify Pitts’ object as their genuine, 

general-relativistic analogue. Read’s crucial −to-date unaccomplished− task would then be to 

flesh all of this out in detail.)  

In the same vein, Read’s Kleinian vindication of coordinate-use doesn’t allay a related worry 

for (REALGLOB). Different coordinate choices can give rise to different (or even ill-defined) 

distributions of global (gravitational) energy-stress (see Xulu, 2003, for a survey of explicit 

calculations). To maintain realism about pseudotensor-based integral quantities, one must 

cope with the ambiguity resulting from such coordinate-dependence.  

There are three options. The first is to remove the ambiguity by privileging certain coordinate 

systems (e.g. quasi-Cartesian ones). This seems to contravene frame-egalitarianism. (On the 

other hand, Read might argue – as does e.g. Pitts (2010) – that our world, to a good 

approximation, does privilege quasi-Cartesian coordinates anyway. But first, one may worry 

whether such an appeal to approximate symmetries is sufficiently robust: how good need the 

approximation be for it to legitimately privilege quasi-Cartesian coordinates? Secondly, as 

we’ll see below (§4.3.2), quasi-Cartesian coordinates aren‘t privileged, when applied to the 

universe as a whole – nor generic subsystems. If, however, one restricts oneself to not too 

large spacetime regions that can be approximated as roughly Minkowskian, quasi-Cartesian 

coordinates are indeed privileged for those subsystem. But such a quasi-Minkowksian regime 

is contingent, and fairly arbitrarily stipulated: what then justifies Read in distinguishing it for 

characterising gravitational energy and/or energy conservation?)          

The other two options are in line with frame-egalitarianism. One is to adopt anti-realism about 

such integral quantities. This defeats Read’s realist ambitions. He should therefore pursue the 

third option – the integral/global version of Pitts’ proposal: all integral quantities are real. That 

is, he should adopt realism about infinite-component objects of the (quasi-symbolic) type     
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∫Θ ≔ {∫𝑑𝑉𝜃𝑎
  𝑏 [〈𝜏, Σ𝜏〉]: ∀〈𝜏, Σ𝜏〉}. 

As before in the case of (REALLOC), the plausibility of Read’s version of (REALGLOB) hinges on the 

plausibility of realism towards such objects. Again, Read’s position doesn’t add a new 

argument for (REALGLOB). Rather, it crucially relies on a prior commitment to a realism about 

the integral Pitts-object – for which Read gives no argument.   

In summary: A conservative framework for classical field theories is Anderson’s geometric 

objects programme. Within it, a physical interpretation of pseudotensors, as envisaged by 

(REALLOC), is doubtful: they aren’t geometric objects. (REALGLOB) fares no better: pseudotensor-

based global notions of gravitational energy are coordinate-dependent artefacts of 

conventions. Read has two options: either to reject (or revise) the geometric object 

framework, or to extend his realism to Pitts’ object. For either choice, we are owed an 

argument. These problems hold irrespective of one’s predilection for a Kleinian or a 

coordinate-free approach to geometry. Read’s response (R1) cuts no ice against them.  

Let’s continue with (R2), Read’s second response, regarding the pseudotensor’s ambiguity 

(H2): he simply assumes that one can learn to live with the plurality, or that uniqueness can 

be restored in a principled manner.  

The ambiguity of pseudotensors bodes ill for (REALGLOB): different pseudotensors can also yield 

different global energy distributions (see again Xulu, 2003, also for further references).  

One response is, of course, to accept the ambiguity about gravitational energy-stress. But such 

pluralism has a drastic conclusion: via the First Law of Thermodynamics, it threatens to subvert 

the uniqueness of thermodynamic states more generally. Read shies away from this 

(pers.comm.).  

Read’s hopes should therefore be set on a way of coping with the non-uniqueness. But he 

remains silent on how to achieve this. Why believe Read’s “implicit supposition” (R2)?  

Two possible reasons spring to mind. One is that perhaps uniqueness can be restored; the 

other is to bite the bullet: perhaps the non-uniqueness is a feature, not a bug. 

It’s certainly conceivable that the list of viable pseudotensors can be further whittled down. 

For instance, vis-à-vis its anomalous factor, it’s plausible to exclude the Møller pseudotensor 

(Katz, 1985). More general arguments for a unique expression are collated in works by Katz 
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(2005), Katz, Bičak & Lynden-Bell (2007) and Petrov (2008). (Note that these authors use a 

background metric. Vis-à-vis such auxiliary structure one may already ponder: does its 

introduction compromise the result?) While an enticing project, a comprehensive analysis of 

such an agenda is pending.  

Another possibility for coping with the non-uniqueness is “to try to find meaning in it” (Pitts). 

In this spirit, Pitts (2017), following Nester (2004) and collaborators, suggests that the 

pseudotensors’ ambiguity is a blessing in disguise: their differences correspond to different 

free energies and the like under different boundary conditions. It remains to be seen whether 

this proposal is convincing (cf. Dürr, 2018a, p.11). At present, it too is an enticing project, not 

a clear-cut argument in Read’s favour.    

In short: As it stands, Read’s response (R2) falls short of being an argument. At present, 

whether uniqueness for gravitational energy can be restored is an open question. Likewise, 

whether non-uniqueness is an advantage, remains controversial. 

Read’s third response (R3) takes Hoefer to reject asymptotic flatness for not applying to our 

universe. Read seeks to legitimise its use as an approximation. This way of portraying Hoefer’s 

criticism, however –as a demand for excessive rigour – glosses over a deeper concern: to what 

extent may we assume that the universe possesses the relevant structures that gravitational 

energy presupposes? 

We can render the question’s import more transparent by dint of Norton’s distinction 

between approximations and idealisations (Norton, 2012). The former denotes an inexact 

description of the target system. The approximation’s referent coincides with it. An 

idealisation, by contrast, is an (inexact) description of a surrogate system that mimics the 

target system in relevant regards. An idealisation’s referent is thus distinct from the target 

system.  

Given a supremely successful model, an inference to the best explanation (IBE) entails 

different realist stances towards it −depending on whether one classifies it as an 

approximation or an idealisation (cf. ibid, §2.4; Torretti, 1990, Ch. 3.6). In the first case, an IBE 

licences realism about the model totaliter: the target system can be assumed to actually 

possess, at least roughly, the properties of the model. By contradistinction, an IBE about an 

idealisation licences only a “selective realism”: we may only assume that the target object 
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shares some structural features with the model – those responsible and indispensable for the 

model’s explanatory success, its “working posits” (see e.g. Vickers, 2016; 2017 for details). 

Only they −not the model tout court− merit a realist interpretation.  

Norton’s distinction affords a refined reading of Hoefer’s objection to asymptotic flatness: 

rather than an intolerably imprecise approximation, asymptotic flatness is an idealisation of 

our actual world. Even when successful, an IBE about asymptotically flat models consequently 

doesn’t warrant an unqualified realism: only their working posits merit realism. Hoefer’s 

criticism (H3) is thus best construed as the view that asymptotic flatness is an idle posit of an 

idealisation. By contrast, Read’s response (R3) is more sanguine: asymptotic flatness is either 

an approximation, or a working posit of an idealisation. Hence, it literally (albeit only in 

approximation) depicts real structures in the world. Neither Hoefer nor Read proffers 

arguments for their respective verdicts, thus construed. I’ll arbitrate between them in §4.2.  

To summarise: Hoefer’s objection to asymptotic flatness is best interpreted as the view that 

the explanatory successes of relativistic astrophysics and cosmology don’t justify the belief in 

approximate asymptotic flatness. Read champions this belief. Neither backs up his stance by 

arguments.    

With his fourth response, (R4), Read goes on the offensive. He points to two unappealing 

alleged consequences of Hoefer’s position. Neither argument strikes me as cogent.  

Read’s first claim, (R4a), is that Hoefer’s eliminativism implies also a failure of energy-

conservation in Special Relativity (SR) − provided one demands that an acceptable 

conservation principle hold in every frame. I agree with Read about this conditional claim. But 

I find no textual evidence that Hoefer endorses the antecedent condition.73 But even if he did: 

his eliminativism isn’t inherently tied to the (implausible) doctrine that conservation principle 

must hold in all frames.74 In fact, for the same reasons why fictitious forces in Classical 

Mechanics (e.g. the Coriolis force) are artefacts of descriptions in ill-adapted, generic 

                                                           
73 The two passages that might suggest the contrary are the following. In the first one, (p. 193), Hoefer says about 
the validity of the pseudotensor-based continuity equation in all frames that “[…] (it) can be taken as generally 
covariant.” This suggests that he equates general covariance with validity in arbitrary coordinate-systems. But in 
light of the Kretschmann argument (e.g. Norton, 1985, sect. 5, whom Hoefer cites!), this sense of general 
covariance is merely formal: any theory can be made to conform to it.  
The second passage is along similar lines. Hoefer (p. 195) approvingly quotes Stephani: the latter laments the 
non-tensoriality of pseudotensorial gravitational energy as a violation of general covariance.  
74 This doctrine is arguably a relic of Einstein’s (erroneous) initial understanding of general covariance (see again 
Norton, 1985 for details). 



113 
 

coordinate systems that needn’t disturb us (see e.g. Maudlin, 2012, pp. 23, fn. 7), we needn’t 

be worried by a conservation principle formulated in special coordinate systems.   

If we thus drop the doctrine of equality of all frames, SR’s conservation law remains untouched 

– as Read (2018, sect. 2.4) admits: owing to the existence of a time-like Killing field in 

Minkowski spacetime, a bona fide, tensorial local and global conservation law is 

straightforward (e.g. Straumann, 2013, Ch. 3.4). The coordinates adapted to these symmetries 

are the familiar (globally defined) Lorentz coordinates. In them the matter energy-stress 

tensor satisfies an ordinary continuity equation, with its standard interpretation. 

Read’s second claim, (R4b), is that on Hoefer’s view, the standard interpretation of binary 

systems must be jettisoned: in this account, gravitational energy evidently is a central 

explanans (e.g. Hobson, Efsthathiou, Lasenby, 2006, Ch. 18). An eliminativist about 

gravitational energy, however, abjures it. Read’s lesson: So much the worse for Hoefer’s 

eliminativism. But Read’s argument is an argumentum ad verecundiam: it merely cites 

orthodoxy in the physics community. What are the cogent, systematic reasons to subscribe to 

it? I’ll return to this in §4.  

In short, neither claim comprising (R4) is persuasive: (R4a) implausibly imputes to Hoefer an 

implausible doctrine; (R4b) is an appeal to majority.  

The insights gained here will pave the ground for our discussion of Read’s own position – the 

topic of our next section. 

IV.4. Functional Gravitational Energy and its Discontent 

Here, I’ll first (§4.1) lay out Read’s functionalist approach to gravitational energy. Its logical 

structure will be made explicit. Subsequently, (§4.2) I’ll critically examine three of its crucial 

premises. I reject them for multiple reasons. Notwithstanding my sympathies to his overall 

functional approach, and to the Dennettian ontological framework, I conclude that Read’s 

realism should be renounced. 

IV.4.1 Functional Gravitational Energy 

Here, I’ll expound Read’s realism about gravitational energy-stress (Read, 2018, §3.3.2, 

§3.3.3), and the logical structure of his argument for it. Read proposes to embrace the 
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background relativity of gravitational stress-energy (in the sense of §3.3). As this background-

relative notion is both useful, and satisfies the functional role of gravitational energy, 

according to Read, we should be realists about it. 

By “background” Read (and Lam, see below) mean (asymptotic) symmetries, encapsulated in 

asymptotic Killing fields, and suitable fall-off conditions, both implemented via asymptotic 

flatness. Lam and Read suggest that one should regard local and global gravitational and total 

energy as quantities well-defined relative to this background.  

Let’s unravel his reasoning in more detail. Read picks up an earlier intimation by Lam (2011): 

on the one hand, “[…] within [GR] all meaningful notions of (gravitational and 

nongravitational) energy-momentum […] require the introduction of some background 

structures” (p. 1023); on the other hand, if these structures are present, genuine gravitational 

and non-gravitational energy exists: “they make only sense in particular (but very useful) 

settings” (ibid.). 

Read’s realism, (REALLOC) & (REALGLOB), can now be cashed out as positive, principled answers 

to the following two questions (p. 19): 

(a) Does the pseudotensor 𝜗𝑎
  𝑏 in (REALLOC) and its associated integral (“charge”) in 

(REALGLOB) represent anything real? Are these formal terms grounded in physical (but 

not necessarily fundamental) quantities?  

 

(b) Suppose a positive answer to (a). Are we then licenced to identify the quantities that 

𝜗𝑎
  𝑏 and its associated charge represent as gravitational energy-stress? “(I)s it correct 

to call the quantity appearing in [the continuity equation of (REALLOC) and its integral 

form in (REALGLOB)] […] ‘gravitational stress-energy’”? 

The questions in (a) require a reality criterion. Echoing Lam, Read appeals to the explanatory 

and predictive utility of the gravitational pseudotensor and its associated charge: “[…] (they) 

are only well defined in a certain subset of [dynamically possible models, DPMs] of GR”; 

(n)evertheless, in such instances it is extremely useful to make use of this term, within that 

subclass of DPMs. Hence, at a practical level, it is legitimate to call such a quantity gravitational 

stress-energy.” 
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This is an instance of the following principle for realist commitment towards a theoretical, 

higher-level concept Q (cf. Dennett, 1991a; Ladyman & Ross, 2007, esp. Ch. 4) – what Wallace 

(2012, Ch. 2) dubs “Dennett’s Criterion”: 

(DC) Whenever Q is definable and explanatorily or predictively useful, 

it captures a real structure (“real pattern”) in the world.  

 

Real patterns are higher-level structures: they are formulated in non-fundamental terms. 

(Think of molecules and their shapes as treated in chemistry. A satisfactory fundamental 

account isn’t available at present (see Hettema, 2012 for the chemical case). Of course, this 

doesn’t imply that real patterns are “strongly autonomous” (Fodor), i.e. unrelated to the most 

fundamental level.) 

To complete his affirmative answer to (a), Read needs to assume that the quantities 

conventionally labelled “(formal) gravitational energy”, gravEf
75, indeed satisfy (DC):  

(DC)[gravEf] For certain DPMs, gravEf is definable and 

explanatorily/predictively useful.  

  

It now follows from (DC) that gravEf  captures a real pattern in the world (“is real”): 

(𝐷𝐶) & (𝐷𝐶)[gravE𝑓] → gravE𝑓 is real.  

Having established the reality of formal gravitational energy, Read’s next step is to affirm (b): 

the real pattern gravEf captures should be identified as genuine gravitational energy-stress; it 

represents gravitational energy-stress also in a substantive, physical sense.  

Read’s rationale encompasses three elements: a general functionalist principle for 

characterising quantities, a particular functional profile for genuine gravitational energy-

stress, and the premise that gravEf  exhibits this profile. 

Read deploys what he terms a “functionalist” (p. 20) general strategy: “In our view, it is 

plausible to maintain that in situations such as those in which [the integral conservation law] 

                                                           
75 For the sake of simplicity, in the remainder of this section gravEf will denote both the gravitational pseudo-
tensor and its charge. 
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holds, there exists a quantity in GR that fulfils the functional role of gravitational stress-

energy” (pp. 19).  

That is, Read adopts the following “functionalism about gravitational energy-stress”: 

(FUNCgravE) For a quantity Q to be (represent, “≐”) genuine gravitational 

energy-stress is for it to exhibit a certain profile ℱ(gravE) of 

functional roles: 

(ℱ(gravE))[𝑄] ⟺ 𝑄 ≐ gravE.    

 

How to flesh out the functional profile of gravitational energy-stress, ℱ(gravE)? Read 

determines it to comprise two functional roles: 

(ℱ(gravE)) (i) balancing the non-gravitational energy such that the 

sum is conserved 

& 

(ii) “(bearing) some relation to the ‘gravitational’ degrees 

of freedom in the theory in question” (p. 20). 

 

To complete his argument, a final premise is needed - viz. that gravEf  plays the preceding two 

functional roles: 

(ℱ(gravE))[gravEf] gravEf instantiates the profile (ℱ(gravE)). 

 

By construction, gravEf obeys a (formal) balance equation. Hence, (i) is satisfied. Likewise, (ii) 

looks harmless: it’s customary (e.g. Misner, Thorne & Wheeler, 1973, passim) to identify the 

metric with the gravitational degrees of freedom (the “gravitational field”); gravEf  is directly 

and solely built from it.  

From the conjunction of (FUNCgravE) and (ℱ(gravE)) now follows that gravEf  earns the label 

“gravitational energy”. It represents genuine gravitational energy-stress:  

(𝐹𝑈𝑁𝐶gravE) & (ℱ(gravE)) & (ℱ(gravE))[gravE𝑓] →  gravE𝑓 ≐ gravE . 
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In summary, Read has thus given a formally valid argument for (REALLOC) & (REALGLOB). Based 

on the alleged expedience of the gravitational pseudotensor and its associated charge, Read 

argued for a realist stance towards them. Furthermore, meeting his functional desiderata of 

gravitational energy, they indeed represent, on his proposal, gravitational energy-stress.  

What to make of Read’s proposal? Is the appeal to functionalism convincing? Does 

gravitational energy-stress in GR really satisfy the functional roles, stipulated by Read? Does 

his proposal overcome the difficulties that undergird Hoefer’s eliminativism (§3.3)? To these 

questions we now turn. 

IV.4.2 Objections 

In this subsection, I’ll evaluate Read’s realism about gravitational energy. Apart from 

Dennett’s Criterion (DC), and the fact that the formal notions of gravitational energy play the 

two functional roles stipulated by (ℱ(gravE))[gravE𝑓], I’ll question each assumption in his 

reasoning sketched above.  

I’ll discuss each premise separately and in increasing order of generality: (ℱ(gravE)), 

(FUNCgravE) and (DC)[gravEf]. 

IV.4.2.1. Is Read’s functional characterisation of gravitational energy-stress 

adequate? 

Consider first Read’s functional profile of gravitational energy-stress, i.e. (ℱ(gravE)): are the 

functional roles of gravitational energy-stress adequately characterised by (i) and (ii)? I dispute 

that: they are neither jointly sufficient nor necessary.  

Two facts cast doubt upon the view that (i) and (ii) are jointly sufficient: the triviality of 

continuity equations, and ambiguity, respectively. 

Firstly, formal continuity equations are too easily procurable (Goldberg, 1958, p. 17). For any 

symmetric quantity 𝛾𝜇𝜈, one can always construct a symmetric quantity Γ𝜇𝜈 that satisfies 

continuity equation 𝜕𝜈(√|𝑔|𝑇
𝜇𝜈 + Γ𝜇𝜈) = 0 – viz. Γ𝜇𝜈: = 𝜕𝜚,𝜎(𝛾

𝜇𝜈𝛾𝜚𝜎 − 𝛾𝜈𝜚𝛾𝜇𝜎) −

√|𝑔|𝑇𝜇𝜈. (Recall that that the energy-stress tensor 𝑇𝜇𝜈 also depends on the metric, cf. 

Lehmkuhl, 2011.) If one now chooses for 𝛾𝜇𝜈 some arbitrary function, e.g. 𝛾𝜇𝜈 = sin(𝑅)𝑅𝜇𝜈, 
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one obtains a quantity that satisfies (i) and (ii). Nonetheless, one would hesitate to ascribe it 

physical significance as a candidate gravitational energy. 

Read may demur at continuity equations thus constructed as they hold irrespective of any 

field equations (and furthermore that they also depend on the matter degrees of freedom). 

They are indeed mathematical identities. Read might parry by supplementing (i) with a 

proviso: the conservation law not be a mathematical identity (and not directly depend on the 

matter degrees of freedom).76  

This doesn’t alleviate the above worry, though: the previous argument can just be rehashed 

for Γ̃𝜇𝜈: = 𝜕𝜚,𝜎(𝛾
𝜇𝜈𝛾𝜚𝜎 − 𝛾𝜈𝜎𝛾𝜇𝜎) −

1

𝜅
√|𝑔|𝐺𝜇𝜈. The continuity equation continues to hold – 

but now in virtue of the Einstein Equations.  

Another problem arises from ambiguity. Recall from §2.3: there exist infinitely many 

pseudotensors satisfying a local continuity equation. All are built solely from the metric. One 

needn’t even restrict oneself to pseudotensors. Nothing in Read’s proposal seems to prevent 

one from introducing e.g. additional flat background metrics, an orthonormal tetrad or a flat 

connection (Pitts, 2011b for a survey of such options).  Ditto quasi-local notions (see e.g. 

Szabados, 2009).77 Objects with the functional profile ℱ(gravE) abound.  

Unless their mutual consistency can be established, this proliferation of candidate objects that 

satisfy ℱ(gravE) should unsettle Read. (Recall our discussion of (R2) in §3.2.) I therefore 

conclude: (i)&(ii) is an insufficient characterisation of the functional profile of gravitational 

energy. 

Further scepticism about the functional roles of ℱ(gravE) is in order. 1. Conserved quantities 

are contingent on symmetries. Hence, criterion (i) isn’t necessary. 2. Criterion (ii) is bedevilled 

by general fuzziness, as well as equivocation about the gravitational degrees of freedom.  

                                                           
76 This meshes with common practice in the literature on conservation laws: one distinguishes between 
“improper” (Hilbert) or “strong” (Bergman) conservation laws on the one hand, and “proper” or “weak” 
conservation laws on the other (see Brading & Brown 2000; Brading, 2005).  
However, whether “proper conservation laws” have physical significance eo ipso is a delicate question (Sus, 
2017). As Read’s counter-manoeuvre would arguably seek to ensure physical significance, the proviso would 
have to be formulated carefully. 
77 Quasi-local approaches are plagued by ambiguities of their own, as both Hoefer (2000, p. 196) and Lam (2011, 
p. 1022) correctly point out.  
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I’ll first argue that (i) imparts a spurious essentiality to a contingent feature of our most 

familiar spacetime settings.  

Underlying Read’s stipulation is the intuition that total energy should be conserved. This 

intuition stems from our habituation to classical theories in flat spacetime (cf. Nerlich, 1991). 

Why expect this to carry over to GR? 

The principal motivation stems from the Noether theorems. They establish a general 

correlation between symmetries of the action and conserved quantities (see e.g. Brading & 

Brown, 2000). Due to its general covariance, GR’s action has infinitely many rigid symmetries 

(see Bergmann, 1949, 1958; Brown & Brading, 2002; Brading, 2005). The Noether Theorems 

then guarantee, at least formally, infinitely many conservation laws of the pseudotensorial 

type. To take these formal infinitely many conservation laws seriously, i.e. to regard them as 

also physically meaningful, leads us back to Pitts’ proposal. Whether it deserves realism, 

remains controversial, as we saw.  

One source of reservations about the infinitely many conservation laws may derive from GR’s 

general covariance. Because of the latter, they belong to so-called “improper conservation 

laws” (Hilbert). These arise from Noether’s theorems for all theories with local symmetry 

group that have a global subgroup (see e.g. Bergmann, 1949; Brading & Brown, 2000). Their 

interpretation and physical significance – as Hilbert’s label intimates – is subtle: under certain 

circumstances, they seem to be (at least, individually78) trivial, i.e. mathematical identities (see 

e.g. Brading, 2005; Sus, 2017), and hence devoid of physical content. What those 

circumstances exactly are, is a question of current dispute (closely related to the empirical 

significance of symmetries, see e.g. Kosso, 2000; Brading & Brown, 2004; Wallace & Greaves, 

2014; Teh, 2015; Murgueitio Ramirez, 2019). On a recent proposal (Barnich & Brandt, 2002; 

Sus, 2017), GR’s improper energy conservation laws can be salvaged from triviality, if the 

dynamically possible spacetime models considered possess (asymptotic) symmetries. 

Whether in our world we should take these infinitely many conservation laws seriously, thus 

depends on whether we should believe that our world instantiates such asymptotic 

background structure. And indeed, I’ll argue below that one should – however, the asymptotic 

structure is that of a de Sitter space. But that entails two problems. The first is that the 

                                                           
78 The totality of pseudotensorial continuity equations, however, is equivalent to the Einstein field equations 
(Anderson, 1967, p. 427). Hence, it possesses physical significance (cf. Pitts, 2010, 2016c).  
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integrals of the pseudotensor-based continuity equations diverge. Thereby, the conserved 

global/integral charges aren’t well-defined. But with the symmetries of de Sitter space, also 

the motivation for a local/differential conservation law, based on pseudotensors, becomes 

moot:  Using the the associated so-called Killing vectors (see e.g. Read, 2018, sect. 2.4), one 

can define bona fide (covariant) matter energy-stress fluxes that are covariantly conserved – 

with no (overt) gravitational contributions (Duerr, 2018a, sect. 2). 

The connection with Killing vectors can be developed further along a different direction. 

Unless the spacetime possesses symmetries (to which special coordinates could be adapted 

(see e.g. Pooley, 2017, sect.), coordinates that would be able to single out pseudotensor-based 

continuity equations) the pseudotensorial conservation laws thus seem to lack intrinsic 

meaning. But such spacetime symmetries are contingent:  generic spacetimes lack them; even 

most do. Why, therefore, cling to energy conservation as a default? It seems more natural to 

reverse the familiar explanatory asymmetry: energy conservation, not its failure, needs 

explanation – in terms of a spacetime’s special symmetries (see Carroll, 2010 for a slightly 

brutal way of putting it; cf. Duerr, 2018a, sect. 2).79   

Of course, one might resist this whole reasoning by pointing to the mathematical fact that, 

due to general covariance, GR’s action has symmetries. But as mentioned before, it’s unclear 

that this, by itself, warrants wider-reaching physical conclusions. (Also bear in mind that that 

most will hesitate to regard an action as more than a merely auxiliary construct − not a physical 

quantity. Hence, inferences from its properties to properties of physical systems must be 

handled with care.) 

Let’s move on to Read’s second functional characteristic of gravitational energy, (ii). It can be 

opposed for two reasons. One is its vagueness: what exactly is the relation that should hold 

between a candidate for gravitational energy-stress and the gravitational field? 

A second worry is more subtle: what are the gravitational degrees of freedom – the 

“gravitational field”?80 Which quantity represents them, e.g. the metric 𝑔𝜇𝜈, the connection 

                                                           
79 One may flesh this out further in terms of Strevens‘ (2011) notion of difference-making. 
80   An anonymous referee has voiced misgivings that this isn’t a serious question for physics: although various 
definitions are possible for the gravitational potential, the proposed choices don’t essentially affect the canonical 
pseudotensor, understood as the canonical energy-stress associated with the gravitational degrees of freedom. 
To identify the latter, according to her or him, only the gravitational field (whose role is presumably analogous 
to that of the electromagnetic field) should be used. 
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coefficients Γ𝜇𝜈
𝜆  (Einstein’s choice, see Lehmkuhl, 2014), the Riemann tensor (Synge’s choice, 

Synge, 1960), or the deviation from flatness 𝑔𝜇𝜈 − 𝜂𝜇𝜈  (Pooley’s choice, Pooley, 2013, fn. 

20)?81 Each choice has some merits in its favour (Lehmkuhl, 2008). Read rightly cautions 

against any premature a priori preference for one.  

 

Yet, it’s not obvious that his second functional role for gravitational energy, (ii), can avoid an 

a priori choice. The pseudotensors in (REALLOC) are the canonical energy-momenta associated 

with the metric as the gravitational field.  

Suppose, however, that we identify the connection coefficients Γ𝛽𝛾
𝛼  as the gravitational field. 

Then, the associated canonical energy-stress is the Palatini-pseudotensor 

𝜗𝜇
  𝜈[Γ] =

𝜕�̂�

𝜕(𝜕𝜈Γ𝛽𝛾
𝛼 )
𝜕𝜇Γ𝛽𝛾

𝛼 − 𝛿𝜇
𝜈�̂�, 

where �̂� = �̂�(𝑔𝜇𝜈 , Γ𝜇𝜈
𝜆 , 𝜕𝜅Γ𝜇𝜈

𝜆 ) is the (full) Einstein-Hilbert Lagrangian as a functional of the 

metric, the connection coefficients, and their first derivatives.82 (Note that it satisfies the 

continuity equation: 𝜕𝜈 (√|𝑔|(𝜗𝜇
  𝜈[Γ] + 𝑇𝜇

𝜈)) = 0 with the standard energy-stress tensor 𝑇𝜇
𝜈. 

Again, 𝜗𝜇
  𝜈[Γ] is determined only up to a superpotential term.)  

Being 2nd order in the metric compatible with the connection, 𝜗𝜇
  𝜈[Γ] manifestly differs from 

the Einstein or Landau-Lifshitz pseudotensor, which Hoefer, Lam and Read are considering. 

What is more, its properties are physically implausible: for instance, it yields divergent 

integrals for radiating systems (see Murphy, 1990 for details). 

 

One may object: by comparing the Einstein pseudotensor and the Palatini pseudotensor, 

aren’t we comparing apples and oranges? The Palatini pseudotensor 𝜗𝜇
  𝜈[Γ] is based on the 

full Einstein-Hilbert Lagrangian −not (as is the Einstein pseudotensor) on the truncated, “ΓΓ" 

                                                           
I beg to differ. First, arguments from analogy are notoriously defeasible. It’s therefore unclear to me that 
speaking of gravitational potentials is legitimate, let alone illuminating. Secondly, even if we trusted the analogy, 
how to flesh it out? Which object represents the potential, which the field? For better or worse, we find various 
options considered in the pertinent physics literature (cf. Lehmkuhl, 2009). 
81 Read (p. 7 p. 20, fn. 35) acknowledges this. 
82 The connection needn’t be assumed to be metrically compatible ab initio. A variation of �̂� with respect to both 
the metric and the connection as independent variables enforces metric compatibility. This variational method 
is called Palatini approach (e.g. Hobson, Efstathiou & Lasenby, 2006, Ch. 19.10). The Palatini pseudotensor 𝜗 𝜇

  𝜈[Γ] 

naturally emerges within this approach – hence its label. 
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Lagrangian ℒ(𝑔). If one determines the corresponding Einstein pseudotensor for the full 

Einstein-Hilbert Lagrangian, both expressions coincide (Novotný, 1993).  

 

Prima facie, this is satisfying (and a remarkable property of the Einstein-Hilbert Lagrangian!). 

Nonetheless, it spells a dilemma for Read. One horn is that Read’s criterion seems incomplete: 

it can’t decide between the Palatini pseudotensor and the metric-based pseudotensors. If 

then, in light of the above considerations, one rules out the former, one thereby has to identify 

the metric as the gravitational field. (Prima facie this isn’t implausible: it surely plays a 

privileged role. For instance, one cannot write down matter coupling to gravity locally using 

only a connection. One also needs the metric or something equivalent.83) But even so, the 

metric’s special status doesn’t by itself justify its elevation to the gravitational field – as Read 

himself admits.84  

 

The worry about the right identification of the gravitational field is even more general: why 

assume that in GR there exists an ambiguously identifiable gravitational field to begin with? 

It’s not implausible that no choice for the gravitational field is ultimately unique across 

different contexts (Rey, 2013).  

In short, Read’s second functional role, (ii), on pain of incompleteness, cannot remain neutral 

on the identification of a gravitational field −against his express intentions.  

IV.4.2.2. Is a functionalist strategy appropriate for gravitational energy-stress? 

Now turn to (FUNCgravE): why appeal to functionalism in the specific context of gravitational 

energy in GR? I’ll launch two lines of attack against it: first, I’ll rebut Read’s explicit argument 

for it; secondly, I’ll rehearse the reasons that motivate functionalism in the philosophy of 

mind, and try to ascertain their analogues.  

                                                           
83 It’s worth recalling that also fermions essentially couple to the connection determined by the metric −not any 
other connection, cf. Pitts, 2012 for details. 
84 What about the analogy between GR and Yang-Mills Theory? On the one hand, it would indeed strengthen the 
identification of the connection as the gravitational field variable. On the other hand, GR isn’t a Yang-Mills Theory 
−at least not in the standard sense (see e.g. Aldrovandi & Pereira, 2013, passim). So, from the outset the analogy 
harbors important subtleties. I therefore side with Read’s admonition to caution: what we identify in GR as the 
gravitational field, requires explicit arguments, and can’t be easily read off from the analogy with Yang-Mills 
Theories. 
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First, let’s examine Read’s own argument for a functionalist stance towards gravitational 

energy. I reject it as unfounded.  

What primarily bolsters (FUNCgravE) for Read is the sterility of its negation: “[…] the alternative 

to functionalism is to say that ‘the structure of certain DPMs of GR is such that it appears that 

there exists gravitational stress-energy in those models, but really there is no such stress-

energy there’; the payoff to be gained from making such a claim is unclear” (p. 20). In 

particular, he cautions that without (FUNCgravE), one may be barred from potentially more 

perspicuous avenues for explaining some gravitational phenomena, e.g. binary systems. 

I concur with Read on the infertility of dogmatically boycotting higher-level explanations from 

the outset. Sundry examples from non-gravitational physics attest to that (e.g. Falkenburg, 

2015; Knox, 2016; 2017; Knox & Franklin, 2018). Yet, the use of higher-level concepts doesn’t 

per se imply functionalism.85 The latter is a specific thesis about the meaning and/or the 

ontological nature of certain quantities (depending on the strain of functionalism, see below). 

The purported explanatory pay-off of recourse to gravitational energy-stress as a non-

fundamental explanans doesn’t per se warrant functionalism about gravitational energy-

stress.  

Moreover, not even the explanatory pay-off of gravitational energy as a higher-level explanans 

is obvious. Read concedes that appeal to gravitational energy-stress isn’t necessary: “one 

could indeed explain all general relativistic phenomena, in any model of the theory, simply 

using the apparatus used to pick out the [Dynamically Possible Models] of the theory” (p. 20).86 

The existence of two alternative explanations prompts the question: which of the two 

achieves the pay-off that Read extolls? (Contrast this with the case of quasi-particles. 

                                                           
85 Read’s source of inspiration for functionalism in the philosophy of physics is Wallace (2012), whom he quotes 
(op.cit, p. 58): “Science is interested with interesting structural properties of systems, and does not hesitate at 
all in studying those properties just because they are instantiated ‘in the wrong way’. The general term for this 
is ‘functionalism […].”  
This is a gross simplification of functionalism. Wallace’s project is primarily concerned with a realist ontology for 
higher-level/emergent entities. Functionalism is first and foremost the doctrine that what makes an entity to be 
of a particular type doesn’t depend on the entity’s composition. Structural realists – such as Wallace (cf. op. cit., 
pp. 314) – are eo ipso functionalists about all entities, including higher-level ones. Those with different 
metaphysical penchants, however, can avail themselves of higher-level explanantia without being functionalists 
about them.     
86 Schutz (2012, p. 7), for instance, writes: “We know today that it is perfectly possible to describe the generation 
of gravitational waves and their action on a simple detector without once referring to energy; the quadrupole 
formula for the generation of the waves and the geodesic equation for their action on a simple detector are all 
one needs […].” 
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Fundamentally, they are collective excitations in a solid. In some regards, they behave like 

particles. A bottom-up, statistical mechanical treatment would require utopian computational 

power: we’d have to solve typically ~1023 coupled differential equations. The pay-off of the 

higher-level description is manifest.)   

What about binary stars, which Read adduces as an example? The case isn’t as clear-cut as 

Read suggests. GR predicts that two stars revolving each other emit gravitational radiation, 

and increase their orbital frequency. With marvellous accuracy, this has been confirmed (e.g. 

Stairs, 2003). In line with Read’s claim, the standard account indeed involves gravitational 

(wave) energy as an explanans (cf. e.g. Hobson, Efstathiou & Lasenby, 2006, Ch. 18): the 

gravitational wave is supposed to carry away the binary system’s total (kinetic plus 

gravitational) energy; as a result, the stars’ orbital frequency increases, with the stars spiralling 

in towards each other. 

In a recent detailed analysis, however, Dürr (2018b) – see Ch. II – compares this standard 

interpretation of the binary stars to the alternative without gravitational (wave) energy which 

Read adumbrates. The latter is found to trump the former on the four explanatory virtues of 

parsimony, scope, depth, and unificatory power. At least pro tempore, this diminishes the 

force of Read’s argument, or even shifts the burden of proof upon Read’s shoulders.87    

Two caveats are in order. First, examples might eventually be found in favour of Read’s claim 

(e.g. in a similar analysis of instabilities in rotating neutron stars, induced by gravitational 

radiation, see e.g. Schutz & Ricci, 2010, §6.2).88 But for the dialectic of the debate to progress, 

                                                           
87 It’s possible to gainsay this conclusion, and still uphold an argumentative asymmetry in favour of Read’s 
position. According to the pragmatic account of explanation, developed by Van Fraassen (1980), what counts as 
a good explanation is always relative to a particular context. From this angle, I seem to make the stronger claim 
that there is no context in which explanatory recourse to gravitational energy-stress pays off. Therefore, it would 
appear incumbent on me to corroborate it. Moreover, the heuristic and didactic benefits seem obvious – not 
least since appeal to gravitational energy is an almost undisputed practice in the physics literature.   
On the one hand, I readily acknowledge some merits of explanations with gravitational energy in certain contexts. 
On the other hand, the above counter doesn’t sway me for two reasons. First, Read would be ill-advised to be 
wedded to one particular – invariably controversial – account of explanation (cf. e.g. Woodward, 2014). Secondly, 
the conjunction of the context-relativity of explanations, and Dennett’s Criterion entails an outré context-relative 
ontology. If what counts as a successful explanans depends on the context, and if the role that a successful 
explanans plays determines what the explanans is, it depends on the context what constitutes a successful 
explanans. Combine this now with (DC): successful explanantia merit realist commitment. A kaleidoscopic 
ontology ensues: the world would seem populated with a plethora of motley entities; depending on the context, 
what exists in the world would vary. This lack of coherence strikes me as unpalatable in an ontology.       
88 The most promising place for such an argument is arguably black hole thermodynamics. I forgo the topic for 
two reasons. Firstly, the current thesis’ ambit is classical GR. I steer clear of any non-classical/quantum aspects. 
Secondly, the status of black hole thermodynamics is the current topic of dispute, cf. Dougherty & Callender 
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detailed case-studies of such examples are needed. At the moment, they aren’t available. 

Secondly, some of the persuasiveness of Dürr’s (2018ab) arguments depends on whether one 

shares his GR-exceptionalist creed (see §1). But Read gives no explicit reasons for or against 

it.        

My second line of attack against (FUNCgravE) adverts to the motivation for functionalism in the 

philosophy of mind. I submit, it doesn’t carry over to the case at hand.  

The functionalism, which Read (via Wallace) imports into the philosophy of physics, stems 

from the philosophy of mind (see e.g. Van Gulick, 2009; Levin, 2013; Braddon-Mitchell & 

Jackson, 2007, Part I, II, IV). It’s mainly motivated by two difficulties: the non-intersubjectivity 

of mental states, and the identity theory’s failure to account for multi-realisability, 

respectively.  

The first is a general and epistemological point: we can’t directly know other people’s mental 

states. They defy inter-subjectivity: a tooth-ache is inherently “private”. At best, we can infer 

mental states indirectly from external indicators (screams, tears, etc.). If thus we want to 

attribute mental states to other people, prima facie we have to postulate them as entities 

whose intrinsic nature is elusive. (Mental states might − at best − be accessible 

introspectively.89) It’s sound philosophical advice to strive to minimise the gap between our 

speculations about the world and our knowledge. How then to accommodate for mental 

states?   

A second motivation for functionalism arises from a shortcoming of the preceding identity 

theory. According to the latter, mental states (or properties) are identical with physical states 

(or properties). Mental states are multiply realisable: it seems unduly chauvinistic to decree 

apriori that organisms can’t be ascribed the same (or sufficiently similar) mental states, 

despite neuroanatomical and neurophysiological differences. Why shouldn’t, say, Read and 

an octopus both be able – at least in principle – to experience pain and pleasure? But on the 

identity theory it remains mysterious, how two intrinsically sufficiently different brain states 

can be identical with the same mental state.  

                                                           
(2016); Wallace (2017). Hence, it’s unclear what inferences to draw from the putative significance of gravitational 
energy for it. 
89 Dennett (1991b) denies even that. 
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Both difficulties can be eschewed by characterising mental states not via intrinsic properties 

of brain states, but via their function: they are individuated by the structural roles they play in 

a (neuronal) network.  

Do these two motivations have counterparts for the case of gravitational energy-stress in GR? 

Three disanalogies speak against it: its absence in the manifest image, its non-privacy and 

absence of multi-realisability.  

First, on the one hand, gravitational energy-stress – unlike mental states – isn’t an empirical 

phenomenon that needs to be accounted for. On the other hand, unlike (say) belief states, 

even as a theoretical concept, gravitational energy scarcely counts as a robust folk-theoretic 

notion in our manifest image that an adequate scientific theory in one way or the other must 

save.90 Read himself acknowledges that it’s − at least conceivably − dispensable.  

Secondly, being a physical quantity, gravitational energy doesn’t suffer from the privacy of 

mental states: nobody is endowed with a privileged introspective access to gravitational 

energy-stress, opaque to lesser mortals.  

A less quirky sense of “privacy” in this context takes its cue from Dennett (1991, cf. Ross, 2000, 

pp. 161).91 For him, it’s typical of real patterns to become visible only on higher-levels of 

description. On the fundamental level, one may lose their salience out of sight: one doesn’t 

see the wood for the trees. (This is the sense in which the higher-level explanations, discussed 

by Knox (2016, 2017) and Franklin & Knox (2017) reveal the salient features, otherwise opaque 

on the microphysical level.)  

                                                           
90 Herein lies a key difference to other areas in philosophy of physics where functionalist strategies are deployed. 
Consider first Everettian quantum mechanics. One of its major challenges is how to recover our manifest image 
of macro-objects in 3-dimensional space, like crystals and anteaters, from the scientific image of a single, richly 
structured entity, defined on a higher-dimensional so-called configuration space. The appearance of three-
dimensionality is a robust phenomenon that on pain of empirical incoherence arguably needs to be accounted 
for (e.g. Ney, 2010). To achieve this, Everettians routinely appeal to functionalism (e.g. Wallace, 2012, Ch. 2; Ney, 
forth.). 
Another example are quantum theories of gravity (cf. Le Bihan, forth. for a detailed analysis between 
functionalism in the philosophy of mind and philosophy of quantum gravity) devoid of familiar (e.g. smooth) 
spatiotemporal structure (Lam & Wüthrich, 2018). Given that the latter is a robust phenomenon, one must 
arguably be able to give a story of how to recover it from our “a-spatiotemporal” scientific image.  
Notice also that, by contradistinction, Knox’s “inertial frame functionalism” clearly doesn’t aim at recovering the 
manifest image. In this regard, then, Wallace’s and Lam & Wüthrich’s projects are closer to functionalism in the 
philosophy of mind than are Knox’s or Read’s respective uses. 
91 I thank James Read (Oxford) for alerting me to this possibility. 
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Is gravitational energy “private” in this sense? Can it only be properly understood on the 

coarse-grained, higher-level which Read’s functionalist perspective envisions? That, too, I 

impugn. Formal notions of gravitational energy aren’t higher-level concepts in the relevant 

sense: they are non-fundamental in that they are only definable in certain subclass of models. 

Again, the motivation from “privacy” founders. 

Thirdly, multi-realisability has no obvious counterpart. Recall that it’s an inter-level 

relationship: it links higher-level and lower-level (more fundamental) entities. (FUNCgravE) 

presupposes that the functional profile of gravitational energy is supplied from gravitational 

theories other than GR.  

The most straightforward such “reference theory” is Newtonian Gravity. GR reduces to it in 

the weak gravity limit.92 Hence, the functional role would be fixed by GR itself in a particular 

regime. (One may already ponder: isn’t it ad-hoc to accord an ontological privilege to this 

particular regime? The more modest goal of identifying rough-and-ready functional 

counterparts of quantities in antecedent theories is, of course, harmless. See below.) Suppose 

now that in another regime, GR exhibits some structural similarity to the weak-field regime. 

This similarity doesn’t constitute an inter-level relationship of the kind required for multi-

realisability. It doesn’t link a fundamental and a less fundamental level of description. Rather 

it’s an intra-level relationship. The same applies to different reference theories, say massive 

graviton gravity.93 Both GR and it vie for providing the best description of the same domain. 

They operate on the same ontological level. Again, we aren’t dealing with multi-realisability.  

It’s terminological confusion to say that GR “instantiates” or “realises” some quantity, defined 

in massive graviton gravity. Of course, one could meaningfully ask: what structures of a GR 

spacetime are the (rough) analogues or counterparts of some quantity in massive graviton 

                                                           
92 Herein lies another, albeit arguably peripheral, difference to the philosophy of mind: it’s not even clear how 
best to conceptualise a potential reduction of the mental to the physical – let alone whether it can successfully 
be carried out (cf. e.g. Beckermann, 2008, Ch. 8,9).  
93 Massive spin-2 graviton theory (e.g. Hinterbichler, 2012; de Rham, 2014) happens to be empirically adequate 
for suitable field masses (Pitts & Schieve, 2007; Pitts, 2011a; 2016). 
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gravity?94 But gleaning structural similarities is ontologically much less ambitious than Read’s 

realism.95  

In short: The two main motivations for functionalism in the philosophy of mind −non-

intersubjectivity of mental states and multi-realisability− lapse for gravitational energy-stress. 

This corrodes any tangible motivation for (FUNCgravE). 

This conclusion calls for qualification. Plausibly, the above motivations are (individually) 

sufficient conditions for the application of functionalism. I don’t claim that they are  necessary. 

But to my knowledge, there aren’t any other motivations for functionalism in the literature. 

Hence, it seems not unfair to request of Read a justification of his functionalist strategy, should 

it be motivated “non-standardly”.    

IV.4.2.3. Is Dennett’s Criterion really satisfied? 

Let’s eventually revert to Read’s reality criterion, (DC). To decide whether the formal concepts 

of gravitational energy, gravE𝑓, capture real structures, Read employs Dennett’s reality 

criterion (DC): if a higher-level quantity is well-defined and explanatorily/predictively useful, 

it merits realist commitment. Are the antecedent conditions really satisfied?  

Let’s hark back to the main finding of our more careful exegesis of Hoefer’s first objection, 

(H1), in §3: realism about local and global pseudotensorial gravitational energy-stress, 

(REALLOC) and (REALGLOB), is obstructed both by the pseudotensor’s ambiguity/non-uniqueness 

                                                           
94  “Analogue gravity” illustrates this. Some non-gravitational systems, e.g. Bose-Einstein condensates or sound 
waves in relativistic fluids, can simulate certain features of general-relativistic gravity (see e.g. Visser, Barceló & 
Liberati, 2011). Rather than instances of multiple realisations of (general-relativistic) gravity, they merely provide 
insights by exploiting analogical structures (cf. Dardashti, Thébault & Winsberg, 2015 for a philosophical analysis). 
95 This is how I classify the “spacetime functionalism”, promulgated by Knox (2013, ms, 2017): it uses the 
functional role of GR’s spacetime to identify the counterparts of (i.a.) GR’s inertial structure in other spacetime 
theories. This is an application of Lewis’ (1970, 1972) proposal of functional definitions. Via the latter, one 
determines correspondences between theoretical terms of two theories rather than (Nagelian) reductions via 
bridge laws.  
In other words: Knox’s “spacetime functionalism”, to my mind, is a form of “commonsense functionalism”, which 
uses the functional role as a reference-fixing device (cf. Braddon-Mitchell & Jackson,2007, Ch. 3,15). I regard it 
as the strength of Knox’s position that it’s not inherently committed to anything ontologically more ambitious 
(e.g. regarding this functional role as constituting the essence of spacetime).  
In particular, my reading of Knox’s spacetime functionalism as a “commensense functionalism” is congenial to 
Baker (2019), who argues that spacetime is a cluster concept: spacetime structure in various theories plays many 
roles, with no single role being sufficient or necessary for spacetime simpliciter. This is exactly what to expect of 
correspondences between terms belonging to distinct theories: usually, there are no unique, one-to-one 
correspondences. 
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and vicious coordinate-dependence (unless Read’s position collapses onto Pitts’ – a position 

for which no independent arguments have been given). Read’s responses to Hoefer were seen 

to be either ineffective or incomplete. His functional approach discussed added nothing 

relevant as regards these problems: the first antecedent condition of (DC) isn’t satisfied: 

gravitational energy-stress isn’t well-defined (except for Pitts’ object).  

What about the other condition – explanatory utility? Read still owes us an argument, or full-

fledged example, for why gravitational energy-stress is a powerful explanans.96 To my mind, 

this can only be satisfactorily gauged through detailed case studies (e.g. of energy extraction 

processes in Black Holes, see e.g. Geroch, 1973). Nonetheless, a strong argument for 

eliminativism can already be made, turning on a wide range of astrophysical and cosmological 

phenomena. 

Recall that Read’s (REALGLOB) hinges on realism about asymptotic flatness. In §3.3, I suggested 

that the disagreement between Hoefer and Read over the acceptability of asymptotic flatness 

best be understood as a disagreement between different classifications: whereas for Read 

asymptotic flatness is a good approximation, for Hoefer it’s an idle posit in an idealisation. The 

bone of contention is therefore: do the salient features of empirically confirmed 

asymptotically flat models successfully refer? Primarily in light of contemporary cosmology, I 

contend, they don’t. 

On the one hand, many spacetimes utilised for modelling the exterior of stationary 

astrophysical objects are indeed asymptotically flat. Apart from the Schwarzschild metric, the 

the Kerr-Newmann solution for the exterior of a rotating, charged black hole is a case in point 

(cf. Reiris, 2014 for a proof of a large class of spacetimes). But unfortunately, no interior 

solution for the (uncharged) Kerr metric is known whose source is a perfect fluid – the simplest 

model for a star.  

This may merely be deplorable. But more generally, Christodolou and Klainerman (1993, p. 

10) warn: “[…] it remains questionable whether there exists any nontrivial (non-stationary) 

solution of the field equations that satisfies the Penrose requirements [i.e. the geometric 

conditions encoding asymptotic flatness]. Indeed, his regularity assumptions translate into 

fall-off conditions of the curvature that may be too stringent and thus may fail to be satisfied 

                                                           
96 Note that Dennett (1989, Ch. 2, 3; 1991a; 2009) accentuates the importance of the immense gain in explanatory 
power – nigh-universal scope and practical ineliminability – for the bona fide applications of his criterion. 
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by any solution that would allow gravitational waves. Moreover, the picture given by the 

conformal compactification fails to address the crucial issue of the relationship between the 

conditions in the past and in the behaviour in the future.”  

The only known non-stationary, asymptotically flat solutions (e.g. within the Robinson-

Trautmann class of metrics describing expanding gravitational waves) are marred by 

singularities. This threatens their physicality.  

There are two responses to this. One is that singularities may not be as calamitous as 

orthodoxy (e.g. Earman, 1995, p.12) has it (Curiel & Bokulich, 2009, sect. 2; Lehmkuhl, 2016).  

Another reaction points to approximate solutions based on perturbative methods.  Via them 

one can determine the spacetime of, say, an in-spiralling compact binary system, yielding a 

spacetime that is non-stationary and asymptotically flat.  

This leads us to the major objection to asymptotic flatness as an approximation − cosmology. 

Prior to that, though, let’s briefly dwell on the perturbative approximation schemes featuring 

in the treatment of binary systems. In a nutshell (see e.g. Maggiore, 2007, Ch. 5; Poisson & 

Will, 2014 for details), in the astrophysical system’s neighbourhood, one employs the so-called 

Post-Newtonian approximation scheme −an expansion in powers of a small parameter (1/𝑐²)− 

to determine the system’s near field. But this expansion in the near-zone expansion is a 

singular perturbation theory: for distances tending to infinity, higher-order terms blow up; the 

Post-Newtonian scheme isn’t uniformly valid for all distances. In particular, it cannot 

incorporate the no-incoming radiation boundary conditions, apt for gravitationally radiating 

objects. One therefore adopts a different approximation scheme for the so-called “far-field 

zone”. In the intermediate region, both expansions are then smoothly glued together 

(“matched asymptotic expansion”). Which boundary conditions to impose for the far-field 

zone? A standard choice is asymptotic flatness.  

Here lies the principal reason for classifying asymptotic flatness as an idealisation: according 

to today’s best cosmological model, we live in an FLRW universe with a positive cosmological 

constant Λ. It leads to infinite (albeit ever slower) expansion in our universe’s long-term 

future: our universe is asymptotically deSitter; it’s not asymptotically flat (see e.g. Carroll, 

2003; Rubin & Hayden, 2016 for details).  
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Already for the exterior of the simplest, i.e. spherically symmetric star model, immersed in a 

deSitter spacetime, asymptotic flatness breaks down. Does this vitiate all −well-confirmed!− 

calculations based on an asymptotically flat far-field? Luckily − no: Far from the source, but 

still much closer than cosmological scales, spacetime is approximately flat – for all practical 

purposes. So, the usual techniques apply – as long as one doesn’t venture too “far out” in 

space and time (Ashtekar, Bonga & Kesevan, 2016; Bonga & Hazboun, 2017). 

Asymptotic flatness is therefore an idealised extrapolation of the ambient spacetime at a 

particular phase of a star’s life: one ignores its future beyond a certain point, prescinding from 

the star’s cosmic embedding. The referents of asymptotically flat spacetimes are therefore 

ahistorical fictional objects. The practising physicist uses them as convenient surrogates for 

the real target objects, e.g. a pulsar, a galaxy, etc., because they share with the latter the 

relevant structural features up to cosmological scales. (It’s this omission of actual history that 

physicists mean, when taking asymptotic flatness to characterise isolated systems. An object 

in an asymptotically flat spacetime is dynamically isolated in the sense that it quiesces into a 

stationary state.97) Asymptotically flat spacetimes thus are idealisations. Even when 

successful, they describe surrogate systems, distinct (with respect to their past or future 

evolution) from remotely physical ones.  

More importantly, the working posits of successful asymptotically flat models aren’t their fall-

off behaviour at infinity. Rather, they are the right fall-off behaviour up to cosmological scales: 

all empirical content is garnered from the properties of a finite patch of an asymptotically flat 

spacetime. But it’s, of course, the behaviour at infinity that is salient of asymptotic flatness. 

Asymptotic flatness is therefore an idle posit. Recourse to (DC) is thus blocked.    

In short: Gravitational energy in Read’s proposal contravenes both conditions of Dennett’s 

Criterion. Owing to its coordinate-dependence and ambiguity, local and global gravitational 

energy is ill-defined (unless Read’s position collapses onto Pitts’, for which then he should 

argue explicitly). Moreover, asymptotic flatness is an idle posit. Hence, it doesn’t yield the 

explanatory mileage that a realist would urge. 

I conclude that Read’s argument for a realism about pseudotensor-based global and local 

gravitational energy fails. In consequence, vis-à-vis Read’s proposal, Hoefer’s alternative 

                                                           
97 I propose that Nerlich’s main argument (2013, pp. 159) should be understood (more charitably) along these 
lines: asymptotic flatness imposes a stationary long-term future – contrary to our best cosmological knowledge. 
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seems preferable. It cuts the Gordian knot: we should indeed be eliminativists about 

gravitational energy, and recognise that in GR, energy just ceases to be conserved as a default 

(see Schrödinger, 1950, p. 105 for a “singularly striking example”, cf. Misner, Thorne & 

Wheeler, 1974, §19.4).  

IV.5. Outlook  

While I argued that Read’s proposal should be rejected, his general functionalist approach to 

gravitational energy can be salvaged, and prove fecund in two slightly different contexts. For 

that, though, we must be clear on what it is – a scheme that allows us in a principled manner 

to 

1. assess when a (cautious) realist stance towards certain non-fundamental quantities is 

apposite – via Dennett’s Criterion; 

2. identify those as counterparts of Newtonian gravitational energy in other theories −via 

Lewisian functional definitions. 

One such promising context concerns non-pseudotensorial approaches to global gravitational 

energy-stress; the other concerns a research programme inaugurated recently by Ashtekar 

and collaborators. 

Whilst Read doesn’t mention them, three other candidates for global gravitational energy lend 

themselves to his agenda (as I believe, it ought to be understood): the Komar mass, the Bondi-

Sachs mass, and the ADM mass. Being non-pseudotensor-based, they circumvent the two 

main defects of pseudotensors discussed above. To gauge the prospects, I’ll comment on 

each.  (I’ll skip the technical details. For them, I refer to Wald, 1984, Ch. 11.2; Poisson, 2004, 

Ch. 4.3; Jaramillo & Gourgoulhon, Ch. 3, and references therein.) 

Start with the Komar mass. I submit, it violates either the first or the second antecedent 

conditions of Dennett’s Criterion. 

For stationary (and asymptotically flat) spacetimes, it furnishes a well-defined, coordinate-

independent notion of global gravitational energy. But this augurs only a Pyrrhic victory for 

Read. The casualty is physical significance: stationarity precludes astrophysical processes like 

stellar evolution, gravitational or electromagnetic radiation. Realism about the Komar mass 
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thus is Pickwickian: its limited applicability is at variance with any demand for explanatory 

utility, i.e. the second condition of (DC). 

The only spacetimes capable of describing in any sense realistic systems, and hence the only 

ones capable of empirical confirmation, are of course non-stationary. But for non-stationary, 

asymptotically flat spacetimes, the Komar energy requires a gauge-fixing in the following 

sense: for the integral to be well-defined, a coordinate condition needs to be imposed on the 

representative of the equivalence class of so-called Bondi-Metzner-Sachs time translations. 

(Loosely speaking, the latter encode translations at infinity, see e.g. Wald, 1985, pp. 283 for 

details.) This gauge-fixing amounts to privileging a certain subclass of time-translations. (NB: 

The problem isn’t the imposition of a coordinate condition per se. Rather it’s the fact that 

thereby one singles out time-translations along directions that aren’t intrinsically 

distinguished.) This looks like a drastic, if not ad-hoc restriction of the concept of energy. It 

thus seems that for empirically relevant contexts, the Komar mass violates the demand for 

well-definedness, i.e. the first condition of (DC). 

A second approach to gravitational energy is the Bondi-Sachs mass. For asymptotically flat 

spacetimes, it’s defined as an integral at “null infinity”. Roughly speaking, that is: One 

evaluates the solution-valued Hamiltonian of GR in the limit surface at infinity along the light 

cone. (Equivalently, one can conceive of the Bondi-Sachs quantities as Noether charges, 

associated with the symmetries of asymptotically flat spacetimes at null infinity.) The Bondi 

mass captures the energy that electromagnetic or gravitational radiation carries off to infinity. 

In the presence of an outward energy flux, the Bondi-Sachs mass decreases. But it always 

remains non-zero. It’s also bounded from above by the third candidate for gravitational energy 

in asymptotically flat spacetimes − the ADM mass. 

In contrast to the Bondi-Sachs mass, it’s defined at “spatial infinity”: one evaluates the 

solution-valued GR Hamiltonian in the limit of spacelike hypersurfaces stretching to infinity. 

The ADM mass is a suitable candidate for total energy-momentum of spacetime. By 

construction, it’s conserved. A celebrated result of mathematical physics is that the ADM mass 

can be shown to be positive (for matter satisfying certain energy conditions). Furthermore, 

under suitable conditions, it initially coincides with the Bondi-Sachs mass. Accordingly, the 

latter can be interpreted as the residual ADM energy after gravitational and electromagnetic 

wave energy has been extracted from the system.     
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What to make of the Bondi-Sachs and ADM mass in the present context? The reflections on 

the status of asymptotic flatness as an idealisation in §4.3.2 curtail rash hopes: With 

asymptotic flatness as their prerequisite (Jaramillo & Gourgoulhon, 2010) both the Bondi-

Sachs and ADM mass don’t seem to merit realist commitment.   

In short, Read’s functionalism about gravitational energy doesn’t fare significantly better for 

the three standard non-tensorial notions of global gravitational energy. The Komar mass is 

either ill-defined or deficient in explanatory power. Both the (standard) Bondi-Sachs and the 

ADM mass presuppose asymptotic flatness. With the latter being an idle posit of an 

idealisation, neither seems to merit realist commitment. 

Another context, however, deserves greater attention. In it, Read’s proposal (understood as 

sketched above, and with the suitable amendments with respect to the characterisation of 

the functional profile of gravitational energy) may prove valuable: the framework for 

asymptotic structure of spacetimes with a cosmological constant, Λ > 0, recently developed 

in a series of papers by Ashtekar, Bonga & Kesavan (2015abc). It promises to circumvent some 

of the problems diagnosed for Read’s approach. In particular, given that our universe is 

arguably asymptotically deSitter, the asymptotic structure on which Ashtekar et al.’s 

framework relies may well count as a working posit of an approximation. It remains to be seen 

whether the symmetries of deSitter space allow for a satisfactory formal definition of 

gravitational energy – and what the functional roles are that it plays. But supposing that 

gravitational energy does admit of a well-defined expression in this context, prima facie it’s a 

counterpart of Newtonian gravitational energy, about which we should be higher-level 

realists.   
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This chapter:  

We identified, in a manner more circumspect than in the preceding chapters, the profound 

challenges that any realist about local gravitational energy in General Relativity faces, even as 

a non-fundamental quantity: inter alia, it doesn’t form a geometric object. Provided that 

global notions are formally definable, I argued that only their explanatory utility would 

warrant a realist stance towards them – a task for future research.  

The next chapter:  

How does the situation look in other gravitational theories? We’ll next inspect the status of 

gravitational energy in the various (geometric and non-geometric) formulations of Newtonian 

Gravity. 
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V. Gravitational Energy in Newtonian Theories 

 

Abstract: 

This chapter investigates the status of gravitational energy in Newtonian Gravity (NG), 

developing upon recent work by Dewar and Weatherall. The latter suggest that gravitational 

energy is a gauge quantity. This is potentially misleading: its gauge status crucially depends on 

the spacetime setting one adopts. In line with Møller-Nielsen’s plea for a motivational 

approach to symmetries, I supplement Dewar and Weatherall’s work by discussing 

gravitational energy-stress in Newtonian spacetime, Galilean spacetime, Maxwell-Huygens 

spacetime, and Newton-Cartan Theory (NCT). Although I ultimately concur with Dewar and 

Weatherall that the notion of gravitational energy is problematic in NCT, the analysis goes 

beyond their work. The absence of an explicit definition of gravitational energy-stress in NCT 

somewhat detracts from the force of Dewar and Weatherall’s argument. I fill this gap by 

examining the supposed gauge status of prima facie plausible candidates – NCT analogues of 

gravitational energy-stress pseudotensors, the Komar mass, and the Bel-Robinson tensor. The 

chapter further strengthens Dewar and Weatherall’s results. In addition, it sheds more light 

upon the subtle link between sufficiently rich inertial structure and the definability of 

gravitational energy in NG. 

Key words: Gravitational energy, Newtonian Gravity, Newton-Cartan Theory, pseudotensors 
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V.1. Introduction  

Energy is a pivotal concept in all of physics. Ubiquitous − not least via the 1st Law of 

Thermodynamics − it has even been argued (by e.g. Bunge, 2000) to be the salient 

metaphysical property of matter. It’s therefore enticing to inquire into the status of the energy 

associated with the gravitational degrees of freedom in Newtonian Gravity (NG): does NG 

admit of a meaningful definition of gravitational energy?  

The question is of interest for at least three reasons. First, one would like to learn what makes 

gravity special, vis-à-vis other physical entities – perhaps already at the pre-general-relativistic 

level. Second, given that NG is an action-at-a-distance theory, one may wonder: does this fact 

impinge upon the definition of a local notion of gravitational energy? With General Relativity 

(GR), as a local field theory, in mind, one may ask: to what extent is NG free from the 

conceptual and interpretative difficulties of quasi-local notions of gravitational energy in GR, 

(cf. e.g. Szabados, 2009)? Third, it’s well known (e.g. Misner, Thorne & Wheeler, 1973, Ch. 12) 

that NG can be cast in a purely geometrical form, analogous to GR: in it, gravitational 

phenomena are re-conceptualised as manifestations of a non-flat spacetime geometry. This 

geometrisation seems to be linked to GR’s notorious conceptual difficulties with respect to 

finding a meaningful notion of gravitational energy (cf. Norton, 2014). Echoing Bunge’s 

suggestion, one might think, these difficulties in defining gravitational energy in GR intimate 

that gravity isn’t a matter field, i.e. of the same type as the electromagnetic one (cf., for 

instance, Sotiriou, Faraoni & Liberati, 2008, sect. 5.2).  Studying NG in its geometrised form in 

closer detail thus promises to help us to better understand such conceptual difficulties – 

especially given that gravitational energy in NG’s un-geometrised form is well-understood and 

unproblematic. Or so it appears.    

In a recent paper, Dewar and Weatherall (2018) have challenged this. They assert that 

gravitational energy in Newtonian gravitational theories fails to be well-defined: that it’s 

gauge-variant. The current chapter responds to this claim. Notwithstanding our agreement 

with Dewar and Weatherall’s overall conclusion, we feel that their reasoning leaves a few 

more things to be said – both formally and in substance. In particular, they don’t attend to the 

question whether the spacetime setting makes a difference to the status of gravitational 

energy in NG. Furthermore, as Dewar and Weatherall (op.cit, p. 13) expressly acknowledge, 
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their reasoning is predicated on a particular view of what counts as a gauge transformation. 

According to this view, Newton-Cartan Theory just is a gauge-invariant reformulation of NG. 

We explore the consequences of a different understanding of gauge – one which, we contend, 

is closer to orthodoxy in the philosophy of physics literature (for better or worse).  

We proceed as follows. Section 2 clarifies some preliminaries about gauge-invariance and 

models (§2.1), and then reviews three non-geometrised classical spacetime settings for 

Newtonian Gravity: Newtonian spacetime (§.2.2), Galilean spacetime (§2.3), and Maxwell-

Huygens spacetime (§2.4); for each, the status of gravitational energy is assessed in detail. 

Section 3 focuses on Newton-Cartan Theory (NCT). §3.1 outlines NCT’s basics. In §3.2, we 

explain why Dewar and Weatherall’s objections against gravitational energy in NCT are 

specious. In §3.3, we try to fill the gap in their reasoning. §4 discusses the results achieved, 

and their relation to Dewar and Weatherall’s own conclusions. 

V.2: Gravitational energy in classical spacetimes 

Dewar and Weatherall raise a deep question about the status of gravitational energy in 

Newtonian Gravity (NG): is it a well-defined physical quantity? An answer isn’t 

straightforward: depending on which space-time setting one adopts, different variants of NG 

ensue (Friedman, 1983; Maudlin, 2012; Weatherall, 2016a). As a result, the status of 

gravitational energy shouldn’t be expected to be the same ab initio. After preliminaries about 

gauge-invariance (§2.1), this section reviews NG within the three non-geometrised classical 

space-time settings: Newtonian space-time (§2.2), Galilean space-time (§2.3) and Maxwell-

Huygens space-time (§2.4), respectively.  

 

V.2.1. Models and gauge-invariance  

In this section, we clarify two concepts germane to the subsequent analysis: the classes of 

models relevant for us, and the notion of gauge equivalence. 

 

Consider a given classical (non-quantum) theory 𝑇. Its associated models consists of n-tuples 

of geometrical objects, defined on a space-time manifold ℳ (for details, see Trautman, 1965; 
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Anderson, 1967). Some of these represent matter variables, e.g. particle positions or field 

configurations. The remaining objects represent space-time structure, encoding e.g. 

chronogeometric or inertial structure.98    

The various space-time settings correspond to different choices for the space-time structure. 

Each choice ought to conform to Earman’s adequacy condition: the spacetime symmetries 

should match the dynamical symmetries (Earman, 1989, pp. 45). That is: The maximal group 

of diffeomorphisms under which the dynamical matter variables are invariant should coincide 

with those under which the spacetime structures are invariant.99 These matter variables are 

introduced as follows. 

A theory’s most general class of models is called its “kinematically possible models” (KPMs). 

According to Curiel (2016), they specify two things.  

1. A specification of the theory’s ontology (in the sense of Quine, 1951): The KPMs 

individuate possible kinds of objects to which the theory 𝑇 is applicable − e.g. a viscous 

fluid or an electromagnetic field;  

2. a specification of the theory’s ideology (in the sense of Quine, ibid.): The KPMs 

enumerate (without determining) the degrees of freedom that form the complete 

state of possible objects of that kind at a point in time. 

 

The laws which, according to 𝑇, relate the entities in the KPMs are given by dynamical 

equations. In particular, these laws fix their law-like interrelations (e.g. diachronic evolution). 

They pick out of the KPMs the dynamically possible models (DPMs). (One may conceive of the 

KPMs as representing T’s metaphysically possible worlds, say, of viscous fluids or 

electromagnetic fields. The DPMs describe nomologically possible worlds; in them, the laws 

of nature prescribed by T hold. Models representing particular worlds − e.g. the actual one we 

inhabit− are obtained, if one further restricts the DPMs by boundary (or initial) conditions.)  

Occasionally, one may wish to interpret a multiplicity of DPMs as representing the same world. 

This constitutes a gauge redundancy. On a mainstream view (which we won’t call into question 

                                                           
98 We needn’t embroil ourselves in the question of whether such a matter/space-time dichotomy can be upheld 
categorically (e.g. Maudlin, 1988; Hoefer, 1996; Rynasiewicz, 1996; Rovelli, 1997; Brown, 2005; Rey, 2013; Knox, 
2017; Martens & Lehmkuhl, ms). 
99 The transformation isn’t to be applied to fixed fields in the theory. Here, a field is called ‘fixed’, if it is identically 
the same in every kinematically possible model (to be defined further below), cf. Belot, 2007, p. 197, fn 137. 
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here100), for an object to represent a meaningful physical quantity, it must be gauge-

independent. Else, it lacks intelligible identity conditions: the properties of an object violating 

gauge-independence are unclear.  

The present chapter isn’t concerned with discussing the criteria of when to physically identify 

two models (cf. e.g. Greaves & Wallace, 2014; Dewar, 2015, 2017; Møller-Nielsen, 2015; 

Martens & Read, ms) – nor with the pondering on the question when to identify two theories 

(cf., for instance, Read & Møller-Nielsen, 2018). While we won’t critically discuss different 

positions on these matters, we’ll nonetheless adopt a cautious stance. Regarding the 

identification of two models, we’ll follow Møller-Nielsen’s “motivational approach” (see 

below). Regarding the identity of gravitational theories, Dewar and Weatherall adopt the 

latter’s own criterion (Weatherall, 2016b): two empirically equivalent theories are merely 

reformulations of the same theory, if they are categorically equivalent to each other. This 

stands in opposition to a more traditional view of theory equivalence, such as Glymour’s 

(1970; 1977). When discussing the variants of NG in the various space-time settings, we’ll side 

with the received view: contrary to Dewar and Weatherall, we’ll treat them as different 

theories. To our mind, the absence of any consensus on such conundrums about theory 

equivalence (cf. Dasgupta, 2018; Ismael, 2018) commends cautious conservatism. A given 

formalism can be interpreted in multiple ways. Whether it’s to be regarded as equivalent to a 

theory couched in a different formalism depends on this interpretation. 

Dewar and Weatherall aver that gravitational energy density in NG lacks gauge-independence. 

This claim deserves scrutiny in each of the canonical non-geometric space-time settings. The 

remainder of the section will tackle this.     

 

V.2.2 Newtonian spacetime 

Let’s first consider NG set in Newtonian space-time (NST), NGNST. Its KPMs consist of the 7-

tuple  

〈ℳ, 𝑡𝑎𝑏 , ℎ
𝑎𝑏 , 𝜎𝑎 , ∇, 𝜑, 𝜚〉. 

                                                           
100 Cf., however, Rovelli (2014) for a discussion and a contrary position. 
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Here, ℳ denotes the smooth, 4-dimensional differentiable manifold of events in space-time.  

𝑡𝑎𝑏 and ℎ𝑎𝑏 are smooth, symmetric tensor fields on ℳ, of signature (1,0,0,0) and (0,1,1,1), 

respectively. That is (see Malament, 2012, pp. 49): ∀𝑝 ∈ ℳ:∃(𝜉(𝑏)
𝑎 )

𝑏=0,…,3
∈ 𝑇ℳ such that  

𝑡𝑎𝑏𝜉(𝑐)
𝑎 𝜉(𝑑)

𝑏 = 𝛿𝑐,𝑑𝛿𝑐,0.  

Analoguously, for the spatial metric, ∀𝑝 ∈ ℳ:∃(𝜎𝑏
(𝑎)
)
𝑎=0,…,3

∈ 𝑇∗ℳ such that 

ℎ𝑎𝑏𝜎𝑎
(𝑐)
𝜎𝑏
(𝑑)
= 𝛿𝑐,𝑑(𝛿𝑐,1 + 𝛿𝑐,2 + 𝛿𝑐,3). The two fields represent a temporal and a spatial 

“metric”, respectively. Due to their degeneracy, they aren’t metrics proper. In particular, 

whilst being able to raise indices with ℎ𝑎𝑏, we can’t lower them with an inverse metric. For 

these two metrics, the following three conditions hold (“orthogonality”, and “temporal” and 

“spatial metric compatibility”, respectively): 

ℎ𝑎𝑏𝑡𝑏𝑐 = 0 

∇𝑐ℎ
𝑎𝑏 = 0 & ∇𝑐𝑡𝑎𝑏 = 0. 

Given a vector field 𝜉𝑎, its temporal length is defined via (𝑡𝑏𝑐𝜉
𝑏𝜉𝑐)1/2. The vector field is called 

time-like or space-like, if its temporal length is positive or zero, respectively. (For the 

analogous spatial “metric” we refer to Malament, 2012, pp. 252. The details subsequently play 

no important role.) 

The vector field 𝜎𝑎 is time-like (in the sense that 𝑡𝑎𝑏𝜎
𝑎 ≠ 0). Its integral curves represent the 

persisting points of absolute space. It grounds a standard of absolute rest/motion. 

∇ is a flat derivative operator on ℳ:  

R𝑏𝑐𝑑
𝑎 = 0. 101 

It supplies the geodesic/inertial structure -loosely speaking: a standard of straightness- in 

terms of which inertial motion is defined.102  

                                                           
101 Recall that this means that the concatenation of parallel transporting a vector 𝜉𝑎  commutes: 

∇[𝑎∇𝑏]𝜉
𝑐 ≡ 𝑅𝑑𝑎𝑏

𝑐 𝜉𝑑 = 0. 
102 It deserves to be underlined that the role of inertial structure isn’t exhausted by explaining (or grounding) 
inertial/force-free motion (see e.g. Pooley, 2012, sect. 5.2).   
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The gravitational potential and its source, the mass density, are represented by the smooth 

scalar fields 𝜑 and 𝜚. (For simplicity, we’ll ignore in the following trivial gauge transformations 

of the potential, 𝜑 ↦ 𝜑 + 𝜑0, for constant 𝜑0.103) 

Throughout, we’ll assume that classical space-times are temporally orientable. That is: There 

exists a continuous, globally defined covector field 𝑡𝑎 such that 𝑡𝑎𝑏 = 𝑡𝑎𝑡𝑏. A time-like vector 

𝜉𝑎 is future-directed, if 𝜉𝑎𝑡𝑎 > 0. Otherwise, it’s past-directed. In conjunction with the 

orthogonality and metric compatibility conditions, orientability allows us to slice up a 

spacetime into simultaneity hypersurfaces (see Malament, 2012, pp. 217). 

In DPMs of NGNST, the gravitational potential 𝜑 obeys the Newton-Poisson Equation,  

ℎ𝑎𝑏∇𝑎∇𝑏𝜑 = 4𝜋𝜚. 

Consider now Galilean (static and kinematic) shifts:104 

Γ: {
𝑡
𝑥𝑖
↦ {

𝑡 + 𝑡0
𝑥0 + 𝑅𝑗

𝑖𝑥𝑗 + 𝑣𝑖𝑡
. 

They comprise uniform time (𝑡0) and space translations (𝑥0), time-independent spatial 

rotations (𝑅𝑗
𝑖), and constant velocity boosts (𝑡𝑣𝑖) in absolute space. In geometric terms this 

translates into linear transformations of the type 𝜎𝑎 ↦ 𝑆𝑏
𝑎𝜎𝑏 + 𝜎0

𝑎 for a constant vector field 

𝜎0
𝑎 and a constant orthogonal matrix 𝑆𝑏

𝑎 with det(𝑆𝑏
𝑎) = 1 (Earman, 1989, Ch. 2). 

In NGNST, kinematic shifts reflect meaningful differences. (Throughout, we’ll adopt the position 

known as sophisticated substantivalism, see e.g. Pooley, 2012, pp. 59. It denies that static 

shifts – uniform time and space translations – correspond to physically distinct possibilities.) 

They describe distinct, velocity-boosted worlds. A material reference body in kinematically 

shifted models moves at different velocities 𝑣𝑖  relative to the persisting points of absolute 

space.  

                                                           
103 Strictly speaking, in order for this shift to be regard as trivial, one must embrace a form of anti-quidditism 
about properties. See Martens & Read, ms for details. 
104 This terminology follows Huggett (1999). 
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Already Newton105 himself, in his Corollary V, acknowledged the symmetry of models of NGNST 

under Galilean shifts: its laws remain invariant under them; with respect to the laws, Galilei-

shifted models are indistinguishable. 

Dynamical shifts generalise kinematic ones. They allow for an arbitrary time-dependent 

translation 𝑑 (𝑡), concomitant with a re-scaling of the potential: 

Δ: {
𝑥 
𝜑
↦ {

𝑥 + 𝑑 (𝑡)

𝜑 − 𝑑 ̈ ∙ 𝑥 + 𝑓(𝑡).
 

In a dynamical shift, one subjects the system to a uniform acceleration, 𝑑 ̈(𝑡), and adds a force 

that remains constant on simultaneity surfaces. (The question of how to translate this into the 

coordinate-free language of differential geometry needn’t distract us here; we’ll return to it 

in §3.1.) A fortiori, dynamical shifts mediate meaningful differences: they represent universes 

in which some material reference body moves at different (uniform) accelerations with 

respect to the persisting points of absolute space.  

Two models of NGNST, related via dynamical shifts, thus also represent distinct worlds.106 (We’ll 

see presently that they are nonetheless observationally indiscernible.) 

According to Dewar and Weatherall, dynamical shifts threaten the gauge-invariance of 

gravitational energy. To see how, let’s first introduce the energy density of the gravitational 

potential 𝜑 as the Noether-current associated with time-translation invariance of the NG 

Lagrangian,  

                                                           
105 “The motions of bodies included in a given space are the same among themselves, whether that space is at 
rest, or moves uniformly forwards in a right line without any circular motion” (Newton, 1729). 
106 We’ll set aside here the question of whether dynamically shifted models still constitute solutions of NGNST. 
Potential doubts might arise from the fact that the “sourceless sources“, driving such shifts, are inimical to the 
Newtonian framework.  
At least as it stands, this argument doesn’t sway us. First, the historical Newtonian framework has no direct 
bearing on the systematic question at hand. Secondly, and more importantly, to assess the question from a 
systematic angle, one must spell out what one means by, and what is included in the “Newtonian framework“. 
An explicit argument must then be given why “sourceless sources“ are indeed prohibited within it. (For instance, 
it’s not obvious that the Newton’s Third Law is applicable: it refers only to forces – and one may deny that 
dynamical shifts constitute forces proper. With forces being arguably causes, we have hereby touched on a subtle 
question in the metaphysics of causation within Newtonian physics.)  
Given the lack of a robust consensus on the details of the metaphysical framework appropriate to Newtonian 
physics – and the ineluctable disputes concomitant with metaphysical frameworks quite general – we deem it 
prudent to remain neutral on whether dynamical shifts don’t preserve solutions of NGNST.    
We thank an anonymous referee for pressing us on this important subtlety. 
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𝐸(𝑁𝐺𝑁𝑆𝑇) = −
1

8𝜋
ℎ𝑎𝑏∇𝑎𝜑∇𝑏𝜑. 

It’s easily verified to be invariant exactly under Galilei-shifts: static and kinematic shifts don’t 

alter the gravitational energy density. By contrast, due to the scaling in the gravitational 

potentials, dynamical shifts do: two NGNST models related via dynamical shifts differ on their 

gravitational energy density.  

Should this disconcert us? Clearly – no: The two NST models, related via kinematic (Γ) or 

dynamic shifts (Δ) describe distinct worlds. Consequently, gravitational energy density, set 

within NST, isn’t a gauge-quantity – contra Dewar and Weatherall. That gravitational energy 

doesn’t vary between such worlds is irrelevant. 

In conclusion: NST has sufficient structure to ward off the spectre of gauge-dependence for 

gravitational energy density. 

To be sure, NST is an objectionable space-time setting for NG. Via its unobservable absolute 

standard of rest, its dynamical and space-time symmetries don’t align. This flouts Earman’s 

adequacy conditions. Yet, one mustn’t conflate the flaws of a space-time setting with the 

(alleged) shortcomings of a quantity – gravitational energy – defined within this space-time 

setting. 

How does the situation look in space-time settings that amend this defect of NST? We next 

discuss Galilean space-time. 

 

V.2.3 Galilean Space-time (GST) 

GST ameliorates (some of) NST’s shortcomings: it drops the assumption of absolute rest, i.e. 

the vector field 𝜎𝑎. Thereby, one can pare down redundant structure. The points of space in 

GST’s no longer persist: their diachronic identity is jettisoned. In NGGST, one identifies all DPMs 

of NGNST that differ only through Galilean shifts Γ.107 Thus, GST retains an absolute standard 

                                                           
107 In the case of static shifts, as discussed above, one may invoke sophisticated substantivalism, i.e. the denial 
that worlds are distinct that differ only with regard to which spacetime points exhibit which metrical properties 
(cf., for instance, Pooley, 2013, §7).   
In the case of kinematic shifts, the symmetry arguably only motivates the search for a more perspicuous ontology 
that can metaphysically elucidate the identity of kinematically shifted worlds (Møller-Nielsen, 2017). This is 
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of straightness of paths between two events: whether a path is straight – a geodesic with 

respect to the flat derivative operator ∇𝑏 – is an absolute matter of fact. (In modal language: 

Those DPMs of NGNST in which the spatio-temporal paths of all possible test matter are parallel 

are identified as describing the same world.108) Contrariwise, as in NST, dynamically shifted 

DPMs remain distinct: in NGGST, dynamical shifts aren’t gauge-transformations.  

What does this imply for gravitational energy density? The expression for gravitational energy 

density for NGGST carries over from §2.3: 

𝐸(𝑁𝐺𝐺𝑆𝑇) = −
1

8𝜋
ℎ𝑎𝑏∇𝑎𝜑∇𝑏𝜑. 

It didn’t depend on 𝜎𝑎, anyway. Under dynamical shifts it changes. 

But as before, this is harmless: dynamically shifted DPMs describe distinct worlds. Hence, that 

they differ on their gravitational energy, doesn’t render the latter gauge-variant. (To be sure, 

dynamically shifted DPMs are empirically indistinguishable. All relational quantities remain 

unaltered. So, an observer in one of several dynamically shifted worlds couldn’t ascertain 

which is hers. This predicament may be metaphysically lamentable – but it’s not a shortcoming 

of gravitational energy.) 

As in the NGNST case, Dewar and Weatherall’s diagnosis of the gauge-dependence of 

gravitational energy is therefore unfounded in NGGST.  

The rebuttals of Dewar and Weatherall’s claim so far may appear trivial. After all, GST - and a 

fortiori NST- arguably aren’t the most perspicuous space-time settings for NG.109 The analysis 

becomes more interesting for the two possible improvements on NGGST, Maxwell-Huygens 

Gravity (NGMHST) and Newton-Cartan Theory (NCT), respectively. We’ll conclude this section 

with the former, before turning to the latter in §3. 

V.2.4 Maxwell-Huygens spacetime (MHST) 

                                                           
provided by GST’s transition from a 3-dimensional to the 4-dimensional picture of reality (cf., for instance, 
Maudin, 2012, pp. 54).  
108 This follows from the fact that the totality of geodesics on a manifold uniquely determine a derivative 
operator. 
109 It’s all the more surprising that GST is the only space-time setting (apart from NCT) for NG which Dewar and 
Weatherall explicitly consider. 
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In light of his Corollary VI, Newton110 may be credited with recognising the empirical 

indistinguishability of models of NG related via uniform accelerations, 𝑥 ↦ 𝑥 ′ = 𝑥 + 𝑑 (𝑡) 

(Saunders, 2013). Here, 𝑑  is a twice-differentiable function, representing an accelerational 

boost. Nonetheless, Newton persevered in his belief in absolute space. In rational (albeit 

historically incorrect, see Huggett & Hoefer, 2015, §6; Rynasiewicz, 2011) reconstructions, he 

is frequently (e.g. Maudlin, 2012, Ch. 2) imputed an invocation of an inference to the best 

explanation for inertial effects. Consider, for instance, the surface of a water-filled pail. It’s 

(observably!) concave, if and only if the bucket is rotating. Is this rotation best conceptualised 

as rotation in absolute space, with the latter understood at least at the level of NGGST? At first 

blush, it might appear so. But in fact, NGMHST further whittles down NGGST’s structure by 

exploiting the symmetry of the Poisson Equation under uniform accelerations. NGGST only 

preserves an absolute sense of non-linear acceleration (equivalently111: rotation), evinced in 

inertial effects, such as in the above bucket experiment. 

 In NGMHST, as we understand it (see below), one identifies NGGST models related via uniform 

accelerations:112 One stipulates that they describe the same world. In contrast to uniform 

accelerations in NST and GST, in MHST they are gauge-transformations.  

Recall that within the geometric framework of classical space-times, derivative operators 

encode inertial structure. Hence, they define standards of accelerations. For MHST, one must 

thus identify those derivative operators that correspond to the same standards of non-

rotational acceleration, up to uniform-accelerational transformations. This translates into the 

following condition for any two such standards of acceleration ∇ and ∇′, and all unit, time-like 

vector-fields 𝜉𝑎 (see Malament, 2012, pp. 263 for details): 

 ∇[𝑎𝜉𝑏] = 0 ⇔ ∇′[𝑎𝜉𝑏] = 0. 

One can envision this condition as the requirement that the verdict whether trajectories of 

free particles in those space-times are not twisted be independent of the choice of the 

                                                           
110 “If bodies, anyhow moved among themselves, are urged in the direction of parallel lines by equal accelerative 
forces; they will all continue to move among themselves, after the same manner as if they had been urged by no 
such forces” (Newton, 1729). 
111 To be sure: A time-dependent linear acceleration –a linear acceleration that is still an arbitrary function of 

time, i.e. of the form 𝜉𝑏∇𝑏𝜉
𝑎 = 𝛼𝑎(𝑡) + 𝛽(𝑡)𝜉𝑎 – isn’t equivalent to a rotation. But any non-linear acceleration 

is.  
112 Again, considering the Poisson equation only. Particle equations of motion will be considered below. 
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standard of acceleration. Such space-times are rotationally equivalent, with rotation 

understood as the twisting of possible free-fall trajectories. 

Formally, one can now quotient out those of NGGST’s KPMs which differ only by uniform 

accelerations (for details, see Weatherall, 2015). A KPM in NGMHST thus takes the form of the 

following 6-tuple:  

〈ℳ, 𝑡𝑎 , ℎ
𝑎𝑏 , [∇], 𝜑, 𝜚〉. 

The only novel object, unfamiliar from GST is [∇], the “standard of rotation”. It’s the 

equivalence class of flat, metrically compatible, rotationally equivalent derivative operators in 

GST:113 

[∇] = {∇′: R′𝑏𝑐𝑑
𝑎 = 0 &∇𝑎

′ 𝑡𝑏&∇𝑐
′ ℎ𝑎𝑏

= 0 &[|𝜉𝑎𝑡𝑎| = 1 ⇒ (∇
′[𝑎𝜉𝑏] = 0 ⇔ ∇[𝑎𝜉𝑏] = 0)]}. 

Here, R′𝑏𝑐𝑑
𝑎  is the Riemann tensor associated with ∇′.114  

It’s straightforward to show that the Newton-Poisson Equation in GST, ℎ𝑎𝑏∇𝑎∇𝑏𝜑 = 4𝜋𝜌, 

remains invariant under changes of rotationally equivalent derivative operators (Dewar, 

2018). DPMs in NGMHST can thus be obtained by identifying rotationally equivalent, but 

otherwise identical, DPMs of NGGST.  

To invest NGMHST with empirical content, we still need equations of motion for matter under 

the influence of gravity.  They group together the equations of motion for NGGST within a 

standard of rotation, such that their (time-like, unit) solutions 𝜉, 𝜉′ ∈ 𝑇ℳ define accelerations 

(with respect to the same derivative operators) that differ only by linear accelerations: 115 

                                                           
113 Speaking of an equivalence class of derivative operators, rather than (e.g.) defining a primitive standard of 
rotation (as does e.g. Weatherall 2017), invokes Dewar’s ‘sophistication’ about symmetries (2018). A recent 
sceptical attitude towards said ‘sophistication’ can be found in Martens & Read (ms). Since we share the latters’ 
scepticism, ultimately we would find it preferable to work with Weatherall’s standard of rotation, rather than an 
equivalence class of operators. Nevertheless, for continuity with the literature, we set such concerns aside in the 
remainder of this article. 
114 Two rotationally equivalent derivative operators ∇ and ∇′ in this class are related via ∇′= (∇, 𝜂𝑎𝑡𝑏𝑡𝑐) for some 

spacelike vector field 𝜂𝑎, satisfying ∇𝑏𝜂𝑎 = 0 (Dewar, 2018, p.256). 
115 We wish to underscore that, given our cautious approach to theory identity, our version of NGMHST differs from 
the ones, primarily considered in the literature (e.g. Dewar, 2018; Weatherall, 2017). Our version’s ontology 
includes a gravitational field ∇𝑎𝜑. By contrast, in Weatherall’s (2017) treatment, “we (do not) need to interpret 
the gravitational potential or corresponding gravitational field, ∇𝜑, as representing facts about force or a field-
like entity” (p. 88). Similarly, in Dewar’s treatment there is also no (privileged) choice of gravitational potential 
or gravitational field. 
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{𝜉 ∈ 𝑇ℳ: ∃∇′ ∈ [∇] such that 𝜉𝑏∇′𝑏𝜉
𝑎 + ∇′𝑎𝜑 = 0}

= ⋃ {𝜉 ∈ 𝑇ℳ: 𝜉𝑏∇′𝑏𝜉
𝑎 + ∇′𝑎𝜑 = 0}

∇′∈[∇]

. 

The (class of) equations of motion picking out this solution set, {𝜉𝑏∇′𝑏𝜉
𝑎 + ∇𝑎𝜑 = 0: ∇′ ∈

[∇]}, is trivially invariant under uniform accelerations. 

What might be candidates for gravitational energy in NGMHST, 𝐸(𝑁𝐺MHST)? The most natural 

one is defined as the equivalence class of all gravitational energy densities of rotationally 

equivalent NGGST models. As the action of two derivative operators upon a scalar is the same, 

∇𝜑 = ∇′𝜑, this equivalence class is well-defined: the gravitational energy densities of two 

Galilean spacetimes with rotationally equivalent derivative operators ∇′ and ∇ coincide, 

𝐸′ = −
1

8𝜋
ℎ𝑎𝑏∇′𝑎𝜑∇

′
𝑏𝜑 = −

1

8𝜋
ℎ𝑎𝑏∇𝑎𝜑∇𝑏𝜑 = 𝐸. 

Consequently, within a model of NGMHST, gravitational energy density is a well-defined 

quantity. It’s not gauge-dependent.116 (Note that while uniform accelerations are gauge 

transformations in NGMHST, dynamical shifts, which also include a transformation of the 

potential, aren’t.) 

Again, Dewar and Weatherall’s proclamation of the gauge-dependence of gravitational energy 

doesn’t apply to NGMHST. Like in NGGST, that dynamically shifted models of NGMHST differ in their 

gravitational energy densities is benign: they describe distinct worlds. 

One may, however, repudiate this formulation of NG within MHST for two reasons: its 

implausible conceptual prerequisites and its radicalness, respectively. 

Firstly, it’s unsatisfactory that in order to define MHST via an equivalence class of derivative 

operators of GST, one draws on structure that ultimately one doesn’t attribute to the space-

time (cf. Weatherall, 2017; Dewar, 2017; Martens & Read, ms).117  

Compare the transition from NST to GST: there, the standard of absolute rest, represented by 

the time-like vector field 𝜎𝑎, could simply be excised: it played only an otiose role in the 

                                                           
116 Note that on Dewar’s version of NGMHST the gravitational energy density would count as gauge-variant, as the 
potential would change. 
117 One could also rephrase this objection in terms of physical degrees of freedom. Concepts natural to a theory 
reflect these, as it were, carving nature at its joints. For NCT, the true physical quantities are 𝑈(1)-invariants – 
rather than boosts, parameterized by 𝑈(1) (Teh, 2017). 
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formulation of NG.) Indeed, elsewhere Weatherall (forthc.) proffers an alternative 

characterisation of MHST without reference to derivative operators. Absent a derivative 

operator, though, how to define gravitational energy density? Evidently, the standard 

definition is no longer available in that case.  

Gravitational energy density could well turn out not to be definable at all (as Dewar and 

Weatherall themselves admit)! That would certainly be grist to Dewar and Weatherall’s mills 

– but for reasons other than those they cite. (It would be desirable to investigate whether 

gravitational energy density could be defined without derivative operators. We’ll not pursue 

this, here, though.)  

Elsewhere, Weatherall (forth., sect. 5) draws attention also to a second blemish of MHST: it’s 

more revisionary than at first blush it appears. Forces as they figure on the l.h.s. of Newton’s 

2nd Law are absolute: they are formulated in terms of one derivative operator. It’s unclear 

whether all of (non-gravitational) physics can be reformulated on MHST. Think, for instance, 

of the Abraham-Lorentz-Dirac force, describing the recoil force of accelerated charged 

particles due to radiation (see Rohrlich, 2007): it’s manifestly not invariant under uniform 

accelerations.  Hence, adopting MHST as the space-time setting for Newtonian physics 

necessitates a revision of the mathematical and conceptual foundations of much of classical 

physics. This may seem gratuitously radical.118 

Another response to NGGST’s redundancy is therefore appealing. In conjunction with the 

equivalence of inertial and gravitational mass, its symmetry under dynamical shifts motivates 

a geometrisation of NG: like in General Relativity, gravitational effects are absorbed into the 

space-time’s non-flat inertial structure. The result is known as Newton-Cartan Theory (NCT). 

To this we turn next. 

V.3. Newton-Cartan Theory  

                                                           
118 The revisionary nature of MHST also crops up with respect to its interpretation. Recall that (considering the 
gravitational field equations only) two GST models correspond to the same Maxwell-Huygens spacetime, if and 
only if they differ merely up to uniform accelerations. Consequently, two DPMs of GST that, albeit rotationally 
equivalent, differ merely in their potentials, count as distinct.  That raises the question of how to interpret the 
scalar in MHST: What is its ontological status? Is it a real physical field, on a par with, say, the electromagnetic 
one? On which space does it live?  
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We’ll now investigate Dewar and Weatherall’s claim that gravitational energy isn’t well-

defined in NCT. This section first (§3.1) reviews the basics of NCT. Next (§3.2), we expound 

why Dewar and Weatherall’s arguments are specious. In §3.3, we try to fill the gap in their 

reasoning.  

3.1 Geometrised NG 

In this section, we review the basics of NCT, as contained in Trautman’s Geometrisation 

Lemma and its converse Recovery Theorem (for all details, see Malament, 2012, Ch. 4.2). 

In NCT, the gravitational potential of NG is absorbed into NCT’s (non-flat) derivative operator. 

This is encapsulated in Trautman’s Geometrisation Lemma. 

Let 〈ℳ, 𝑡𝑎, ℎ
𝑎𝑏 , ∇𝑎〉 be a Galilean (henceforth: “classical”) spacetime. (The derivative operator 

∇𝑎 is assumed to be flat; its associated Riemann tensor vanishes, R𝑏𝑐𝑑
𝑎 = 0.) Let furthermore 

𝜑 and 𝜚 be smooth, real-value scalar fields on ℳ which obey the Poisson Equation, 

ℎ𝑎𝑏∇𝑎∇𝑏𝜑 = 4𝜋𝜚. Finally, let ∇̃𝑎= (∇,−t𝑎t𝑏ℎ
𝑐𝑑∇𝑑𝜑).

119 Then, the following three 

propositions hold: 

1. 〈ℳ, 𝑡𝑎, ℎ
𝑎𝑏 , ∇̃𝑎〉 is a classical spacetime. 

2. ∇̃𝑎 is the (unique) derivative operator such that for all time-like curves on ℳ with 4-

velocity 𝜉𝑎:  𝜉𝑎∇̃𝑎𝜉
𝑏 = 0 ⇔ 𝜉𝑎∇𝑎𝜉

𝑏 = −ℎ𝑏𝑐∇𝑐𝜑. 

3. The Riemann curvature R̃𝑏𝑐𝑑
𝑎  associated with ∇̃𝑎 satisfies  

a. the “geometrised” Poisson Equation �̃�𝑎𝑏 ≔ R̃𝑎𝑐𝑏
𝑐 = 4𝜋𝜚𝑡𝑎𝑡𝑎, 

b. and the curvature conditions R̃    𝑐𝑑
𝑎𝑏 = 0 & R̃  𝑏 𝑑

𝑎 𝑐 = R̃  𝑑 𝑏
𝑐 𝑎 . 

 

The second proposition states an equivalence between geodesic/un-accelerated/inertial 

motion with respect to one derivative operator, and particular accelerated/non-inertial 

motion with respect to another: exactly those curves are geodesics with respect to ∇̃𝑎 that 

describe accelerated motion that is the result of the Newtonian gravitational force, with 

respect to ∇𝑎. In this sense gravity is geometrised - or rather “inertialised” (cf. Nerlich, 2013, 

                                                           
119 That is (see Malament, 2012, Ch. 1.7): Let ∇ and ∇′ be two derivative operators on a manifold ℳ. Then 
(following op.cit., p. 53), we’ll write ∇′ = (∇, 𝐶𝑏𝑐

𝑎 ), iff they are related via a symmetric tensor field 𝐶𝑏𝑐
𝑎 : For any 

tensor 𝛼𝑏1…𝑏𝑠
𝑎1…𝑎𝑟 of rank (𝑟, 𝑠) on ℳ, (∇′𝑚 − ∇𝑚)𝛼𝑏1…𝑏𝑠

𝑎1…𝑎𝑟 = 𝛼𝑛𝑏2…𝑏𝑠
𝑎1…𝑎𝑟 𝐶𝑚𝑏1

𝑛 + 𝛼𝑏1𝑛𝑏3…𝑏𝑠
𝑎1…𝑎𝑟 𝐶𝑚𝑏3

𝑛 +⋯− 𝛼𝑏1…𝑏𝑠
𝑑𝑎2…𝑎𝑟𝐶𝑚𝑑

𝑎1 −

𝛼𝑏1…𝑏𝑠
𝑎1𝑑𝑎3…𝑎𝑟𝐶𝑚𝑑

𝑎2 −⋯. 
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Ch. 9; Lehmkuhl, 2014, esp. §4): the deviation from inertial trajectories, defined via ∇𝑎,  due 

to the gravitational force is reconceptualised as a manifestation of (non-flat) inertial structure, 

defined via ∇̃𝑎. (The interpretation of the curvature conditions shan’t concern us here. 

Instead, we refer to Malament, 2012, Ch. 4.3.) 

Via the Recovery Theorem, we can re-translate geometrised NCT gravity back into non-

geometrised NGGST.  

Let the classical spacetime 〈ℳ, 𝑡𝑎, ℎ
𝑎𝑏 , ∇̃𝑎〉 satisfy the geometrised Poisson Equation �̃�𝑎𝑏 =

4𝜋𝜚𝑡𝑎𝑡𝑎 for some smooth scalar field 𝜚 on ℳ, and the Trautmann curvature conditions 

R̃   𝑐𝑑
𝑎𝑏 = 0 & R̃  𝑏 𝑑

𝑎 𝑐 = R̃  𝑑 𝑏
𝑐 𝑎 . Then, in the neighbourhood of any point a real-valued scalar 𝜑 and 

a derivative operator ∇ exist, such that the following propositions hold: 

1. ∇ is compatible with  𝑡𝑎 and ℎ𝑎𝑏. 

2. ∇ is flat. (Its associated Riemann tensor vanishes, R𝑏𝑐𝑑
𝑎 = 0.) 

3. For all time-like curves on ℳ with 4-velocity 𝜉𝑎:  𝜉𝑎∇̃𝑎𝜉
𝑏 = 0 ⇔ 𝜉𝑎∇𝑎𝜉

𝑏 = −ℎ𝑏𝑐∇𝑐𝜑.  

4. 𝜑  satisfies the Poisson Equation: ℎ𝑎𝑏∇𝑎∇𝑏𝜑 = 4𝜋𝜚. 

 

Via the Recovery Theorem, we can “de-geometrise” NCT spacetimes: geodesic/inertial motion 

with respect to ∇̃, which was force-free, is now re-conceptualised as accelerated/non-inertial 

motion with respect to ∇, subject to the gravitational force. 

The de-geometrisation isn’t unique. A second pair 𝜑′ and ∇′ for which  

ℎ𝑎𝑏∇𝑎∇𝑏(𝜑 − 𝜑′) = 0 & ∇′ = (∇, t𝑎t𝑏ℎ
𝑐𝑑∇𝑑(𝜑 − 𝜑′)) 

also satisfies the conditions 1.-4. of the Recovery Theorem.  

The transformations between any pair (𝜑, ∇) and (𝜑′, ∇′) that each satisfies the two non-

uniqueness conditions are the dynamical shifts, mentioned in §2.2. Consequently, two models 

of NGGST related via dynamical shifts are “de-geometrisations” of the same NCT spacetime. It 

has therefore been argued -e.g. by Pooley (2012, §6.1.1) or Knox (2014)- that the gravitational 

scalar and the derivative operator of ungeometrised NG –i.e. NGGST- are merely gauge-

dependent quantities; geometrised NG -i.e. NCT- provides a gauge-free formulation of NG. 

With its dynamical symmetries matching its spacetime symmetries, and hence conforming to 

Earman’s adequacy conditions, NCT is a satisfactory theory of gravity. 
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In summary: NCT allows us to re-conceptualise gravitational effects as manifestations of non-

flat spacetime geometry (inertial structure). Models of NGGST related via dynamical shifts can 

be identified as the same NCT spacetime.  

V.3.2 Dewar and Weatherall on gravitational energy in NCT  

Let’s now assess Dewar and Weatherall’s principal argument against gravitational energy in 

NCT. Its logical form can be reconstructed as follows: 

(1) The natural expression for gravitational energy in NGGST isn’t invariant under dynamical 

shifts. 

(2) In NCT, one identifies those DPMs of NGGST that are related via dynamical shifts as 

physically equivalent; they are gauge. 

(3) Therefore, gravitational energy in NCT isn’t gauge-invariant. 

 

Our authors correctly observe (1) and (2). However, their conclusion -(3)- is objectionable for 

a simple reason: nowhere do Dewar and Weatherall explicitly define the object that is 

supposed to most naturally represent gravitational energy in NCT.  

This is a crucial shortcoming. It renders their argument both formally and substantively 

incomplete. After all, Trautman’s Geometrisation Lemma and Recovery Theorem (§3.1) only 

equip us with a translation between the 6-tuple 〈ℳ, 𝑡𝑎, ℎ
𝑎𝑏 , ∇𝑎, 𝜚, 𝜑〉 of non-geometrised 

NGGST quantities, and the 5-tuple 〈ℳ, 𝑡𝑎, ℎ
𝑎𝑏 , ∇̃𝑎, 𝜚〉 of geometrised NCT quantities; both are 

silent on any other quantities.  

For Dewar and Weatherall’s above syllogism to formally go through, premise (1) needs to be 

superseded by 

(1’) The (most natural) NCT counterpart of the Galilean gravitational energy isn’t 

invariant under dynamical shifts. 

With this, the conjunction of all three premises entails the conclusion:  

(1′)&(2) → (3). 

But why believe that (1’) is true? It’s far from clear –as Dewar and Weatherall concede 

themselves- whether the NCT counterpart of Galilean gravitational energy even exists – and if 
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it does, whether it indeed fails to be invariant under dynamical shifts. (To be sure, if either 

could be negated, this would be grist to Dewar and Weatherall’s mills. Their conclusion would 

remain intact. But it would follow from different reasons: namely those against the existence 

of the most natural NCT counterpart of Galilean gravitational energy, rather than the gauge-

dependence of an actually existing NCT gravitational energy.) In short: It’s one thing to doubt 

the definability of gravitational energy; it’s another to doubt its physical meaningfulness (or 

well-definedness). Dewar and Weatherall focus on the latter. 

Even if one charitably grants that the meaning of “most natural candidate” is clear, one may 

impugn the very existence of an NCT counterpart of Galilean gravitational energy. As the 

Geometrisation Lemma discloses, Galilean gravitational energy contains terms absent in NCT. 

In the latter’s DPMs, a gravitational potential doesn’t appear; it has been absorbed by NCT’s 

non-flat connection. Furthermore, Galilean gravitational energy is defined via the (flat) 

derivative operator of GST. Which derivative operator should then enter the NCT counterpart 

of Galilean gravitational energy? An intuitive choice would, of course, be NCT’s (non-flat) 

derivative operator. But this is scarcely compelling. 

If thus gravitational energy in NGGST essentially hinges on terms absent in NCT, then why 

assume that it can be defined at all in NCT?  

In conclusion: Unless the possible candidate for NCT’s gravitational energy is explicitly defined, 

Dewar and Weatherall’s criticism of the latter’s (alleged) gauge-dependence forfeits much of 

its force.  

To fill this lacuna, we’ll now discuss various concrete options.   

V.3.3. Candidates for gravitational energy in NCT 

In the preceding section, we argued that Dewar and Weatherall’s criticism of gravitational 

energy in NCT is vitiated by their lack of an explicit definition of gravitational energy in NCT. 

Here, we’ll examine a number of natural candidates: 1. pseudotensors, 2. Komar energy, 3. 

Lorentz and Levi-Civita’s proposal, 4. The Bel-Robinson tensor. 5. Pittsification. Rather than 

suffering from gauge-dependence, these proposals will be argued to be either not well-

defined, or to yield trivial gravitational energy.  
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Dewar and Weatherall (2018, fn. 30) enjoin such an examination of explicit proposals. It has 

two kinds of merits. After all, in empirically equivalent theories, radically different objects can 

play the same role. (Think of Starobinski’s original model of cosmic inflation (see, e.g., De 

Felice & Tsujikawa, 2010, sect. 2,3 for details.) In one formulation, the latter is driven by a 

scalar, hence arguably a matter field on spacetime. In an equivalent formulation, inflation is 

merely a manifestation of spacetime curvature deviating from what it should be according to 

GR.) Furthermore, comprehending the various possibilities in which a conceptually rich theory 

such as NCT can fail to exhibit a certain feature considerably enhances our understanding of 

it. In particular, this broadening of our repertoire of instruments is likely to pay off in 

comparing NCT to other theories in its theoretical vicinity, such as GR. (In the apt terms of Pitts 

(2017): Spacetime philosophy should aspire to “modal cosmopolitanism” - rather than “modal 

provincialism”.) 

V.3.3.1. Pseudotensors 

In this subsection, we evaluate the natural NCT counterparts of the general-relativistic 

pseudotensors as possible candidates for gravitational energy. They are found to trivialise the 

latter. 

The standard approach to gravitational energy in GR proceeds via the Noether theorems.120 

The absence of a (tractable, natural) Lagrangian or Hamiltonian formulation of NCT encumbers 

this road, though.121  

One might, however, take the definitions of pseudotensors, as familiar from GR, and just 

stipulate their formal NCT analogues. What encourages such a procedure is that 

pseudotensors – at least in GR – arguably satisfy natural desiderata for local gravitational 

energy, e.g. a conservation law, the dependence only on first derivatives of the field variables, 

or the reduction to the familiar Newtonian potential energy in the weak-field limit (Dürr, 2018, 

§3.2). 

                                                           
120 Historically too, this was Einstein’s route – avant la lettre (Brading, 2005). 
121 In private correspondence, Nic Teh has conjectured that the non-existence of a Lagrangian or Hamiltonian 
formulation without Lagrange multipliers of NCT is even provable (cf. Hansen, Hartong & Obers, 2019). 
It’s straightforward to find a Lagrangian with suitable multipliers. But the latter are, of course, under-determined. 
Canonical gravitational energy-momentum for (i.e. the Noether current attributed to) the (non-flat) NCT metric 
would depend on the Lagrange multipliers, and hence would be ill-defined.  
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Following Goldberg (1958), an infinitely large class of pseudotensor densities (of arbitrary 

weights 𝑛 + 1, 𝑛 ∈ ℕ≥0) can be constructed as follows. (We restrict ourselves to mixed indices 

– one up, one down.) 

𝜗𝜇
(𝑛)𝜈

= |𝑔|
𝑛
2 {𝜗𝜇

 𝜈 +
𝑛

2
𝑈𝜇
[𝜈𝜎]𝜕𝜎 ln|g|} 

Here, |𝑔| denotes the modulo of the determinant of GR’s metric. 𝑈𝜇
[𝜈𝜎] denotes a so-called 

super-potential. (The details needn’t detain us here.) 

For 𝑛 = 0, we obtain the weight-one density of the Einstein-pseudotensor 𝑡𝜇
 𝜈 :122  

𝜗𝜇
(0)𝜈 = √|𝑔|𝑡𝜇

 𝜈: = 2√|𝑔|𝐺𝜇
𝜈 + 𝜕𝜎 (|𝑔|

−
1
2𝑔𝜇𝜆𝜕𝜌(|𝑔|𝑔

𝜆[𝜈𝑔𝜎]𝜚)). 

Together with the matter energy-momentum tensor |𝑔|
𝑛+1

2 𝑇𝜈
𝜇

, (of weight 𝑛 + 1), the 

pseudotensors –representing gravitational energy-momentum – form the system’s total 

energy-momentum 𝒯𝜇
(𝑛)𝜈

≔ |𝑔|
𝑛+1

2 𝑇𝜈
𝜇
+ 𝜗𝜇

(𝑛)𝜈
. The latter satisfies the continuity equation: 

𝜕𝜈𝒯𝜇
(𝑛)𝜈

= 0. 

Albeit not a tensor equation, this continuity equation holds in all coordinate systems. Hence, 

total energy-momentum can be said to be (locally/differentially) conserved. 

For the NCT counterparts to the general-relativistic pseudotensors, it’s tempting to replace 

the general-relativistic metric in the above expressions by NCT’s spatial or temporal pseudo-

metric, ℎ𝑎𝑏 and 𝑡𝑎𝑏 = 𝑡𝑎𝑡𝑏 respectively. In fact, it can be shown (Andringa et al., 2011) that 

NCT doesn’t admit of a non-degenerate metric with which the NCT connection is compatible. 

Hence, the subsequent discussion is without loss of generality. 

However, due to their degeneracy, i.e. vanishing determinant, this is a non-starter: one can 

easily verify that the resulting NCT pseudotensors either are trivial or nor defined at all. The 

latter is the case for 𝜗𝜇
(0)𝜈

, i.e. 𝑛 = 0;123 the former is the case for 𝜗𝜇
(𝑛)𝜈

s for 𝑛 > 0.124  

                                                           
122 Alternate formulations can be found in e.g. Dirac (1975, Ch.31,32) or Ohanian & Ruffini (2013, A5). 
123 Dirac’s affine form of the weight-1 Einstein pseudotensor density also yields a vanishing result for a singular 
metric. 
124 A slightly more interesting approach with the same negative result is the following. By evaluating the 
connection’s action on a vector field, one can easily show that  

∇̃= (∇, 𝐶𝑏𝑐
𝑎 ) ⇔ Γ̃𝑏𝑐

𝑎 = Γ𝑏𝑐
𝑎 + 𝐶𝑏𝑐

𝑎 . 
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In conclusion: The natural NCT counterparts to GR’s standard pseudotensor weights either are 

either ill-defined, or they yield a trivial notion of gravitational energy. While consonant with 

Dewar and Weatherall’s conclusions, this result has nothing to do with a lack of gauge-

invariance.125   

V.3.3.2. Komar mass 

This section is devoted to a plausible definition of total energy of NCT spacetimes via the 

Komar integral. Like pseudotensors, it trivialises gravitational energy. 

The most natural path to a global notion of gravitational energy in GR proceeds via the 

Noetherian route or, equivalently, the Hamiltonian formalism. As mentioned in the preceding 

section, for NCT this path is blocked. For static spacetimes in GR, an alternative exists: the 

Komar integral. (In GR, it coincides with the Hamiltonian definition, see e.g. Poisson, 2004, Ch. 

4.3.) 

Consider a static spacetime, i.e. one with a(n asymptotically normalised) time-like Killing field 

𝜉, satisfying ∇(𝑎𝜉𝑏) = 0 . For such a spacetime, there exists a natural definition of “holding an 

object in place” via 𝜉’s orbit (see Wald, 1984, pp. 285 for details). This gives rise to a likewise 

natural notion of acceleration with respect to this orbit. Via this acceleration, a force can be 

defined that an observer at infinity must exert in order to keep a unit mass in place. 

Analogously to the characterisation of the total energy of the electrostatic field in terms of its 

asymptotic properties, we thus arrive –after various manipulations, for which we refer to the 

                                                           
For the Newton-Cartan connection components, we therefore get 

Γ̃𝑏𝑐
𝑎 = Γ𝑏𝑐

𝑎 − ℎ𝑎𝑛𝑡𝑏𝑡𝑣∇𝑛𝜙, 

where Γ𝑏𝑐
𝑎  denote the components of the flat connection (∇) of Galilei spacetime. 

Now replace GR’s connection components by those of the Newton-Cartan connection, i.e. Γ̃𝑏𝑐
𝑎  in Dirac’s (1975, 

Ch.31) form of the Einstein pseudotensor. It’s straightforward to verify that, due to the orthogonality conditions 
of the spatial and temporal metric, the result is ill-suited for representing gravitational energy: the resulting 
Newton-Cartan pseudotensor doesn’t depend on the gravitational potential of the de-geometrised theory; it 
only depends on Γ𝑏𝑐

𝑎 . In other words: the resulting Newton-Cartan pseudotensor isn’t related to NCT’s 
gravitational degrees of freedom. The same applies to the affine version of the Landau-Lifshitz pseudotensor 
(Landau & Lifshitz,1971, Ch. 96), when replacing in it the general-relativistic connection components by those of 
the above NCT connection. 

125 GR’s pseudotensors are usually regarded as tainted by the problem of coordinate dependence (cf., for 
instance, Weyl, 1923, p. 273). By contrast, NCT’s pseudotensors are free from that evil: whenever they are 
defined, the NCT pseudtensor densities vanish coordinate-independently. In the same vein, they are –albeit 
trivially- invariant under dynamical symmetries. 
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literature (ibid.) – at the following expression for the energy enclosed in the topological 2-

sphere 𝒮𝑡 in the hypersurface orthogonal to 𝜉: 

𝐸 = −8𝜋 lim
𝒮𝑡→∞

∮ 𝑑𝜎𝑎𝑏

𝒮𝑡

∇𝑎𝜉𝑏. 

Here, 𝑑𝜎𝑎𝑏 denotes the surface element on 𝒮𝑡. This integral can serve as a definition of total 

energy in general-relativistic static spacetimes. It turns out to be conserved. 

Given that NCT spacetimes are static in a natural sense,126 it’s now tempting to stipulate the 

NCT counterpart of the Komar integral as a candidate for the total energy of NCT spacetimes 

as well. To that end, one plausibly replaces the Killing field in the Komar expression’s integrand 

by NCT’s time covector, 𝜉𝑎 → 𝑡𝑎. This already suffices to trivialise the proposal: due to the 

compatibility condition of NCT’s time pseudo-metric, ∇𝑎𝑡𝑏 = 0, the NCT counterpart of the 

Komar integral vanishes. Consequently, the total energy of a NCT spacetime would be zero. 

Gravitational energy – understood as the energy left after subtracting the energy 

contributions of ordinary matter – would then always exactly counterbalance matter energy. 

This is implausible for reasons that we’ll explain in the next subsection, in which we’ll discuss 

Lorentz and Levi-Civita’s proposal.  

V.3.3.2. Lorentz and Levi-Civita’s proposal 

Lorentz and Levi-Civita proposed the Einstein tensor, G𝑎𝑏 = R𝑎𝑏 −
1

2
𝑅g𝑎𝑏 (or, for reasons of 

dimensionality, −
1

2𝜅
G𝑎𝑏, with 𝜅 ≔

4𝜋𝐺

𝑐4
) as a representation of gravitational energy in GR (for 

details, see Cattani & DeMaria, 1993, sect. 5-11). Is this convincing for the NCT case? For 

reasons again both general and specific to NCT, we argue that this isn’t the case. 

Three facts commend Lorentz and Levi-Civita’s proposal. (1) In contrast to pseudotensorial 

approaches, the Einstein tensor is a bona fide tensor. (2) It obeys a bona fide covariant 

conservation law: the contracted Bianchi identity, ∇𝑏𝐺
𝑎𝑏 ≡ 0. The attendant total energy-

momentum 𝔗(𝐿𝐿𝐶)
𝑎𝑏 ≔ −

1

2𝜅
𝐺𝑎𝑏 + T𝑎𝑏, satisfies both an ordinary and covariant continuity 

equation, ∂𝑏( 𝔗(𝐿𝐿𝐶)
𝑎𝑏) = ∇𝑏( 𝔗(𝐿𝐿𝐶)

𝑎𝑏) = 0. (3) The Einstein tensor is the exact gravitational 

counterpart of the matter energy-momentum tensor: whereas the latter is defined 

                                                           
126 That is: Its defining partial differential equations are elliptic. Hence, information about variations in a region 
propagates instantaneously. 
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variationally as 𝑇𝑎𝑏 = −
2

√|𝑔|

𝛿

𝛿𝑔𝑎𝑏
(√|𝑔|ℒ(𝑚)), one obtains the Einstein tensor (up to a 

proportionality factor) by replacing the matter Lagrangian by the purely gravitational Einstein-

Hilbert Lagrangian,  

𝐺𝑎𝑏 ∝
1

√|𝑔|

𝛿

𝛿𝑔𝑎𝑏
(√|𝑔|𝑅). 

The first two features carry over to NCT. The third one, however, doesn’t: the absence of a 

natural Lagrangian formulation of NCT’s full gravitational sector (cf. Hansen, Hartong & Obers, 

2019) − including the two Trautmann conditions imposed on curvature − weakens the analogy 

between the Einstein tensor and the matter energy-momentum tensor. 

But there are stronger reasons to question Lorentz and Levi-Civita’s proposal: physical 

implausibility and vacuity, respectively (cf. Pauli, 1981, fn 180-181). Firstly, consider the 

Einstein Equations in vacuum. This, on Lorentz and Levi-Civita’s proposal, yields vanishing 

gravitational energy, 𝐺𝑎𝑏 = 0. But that’s counterintuitive: since the Einstein tensor is 

constructed from traces of the Riemann tensor, a solution of the vacuum Einstein Equations 

has in general non-vanishing Weyl structure.127 The latter encapsulates gravitational radiation. 

Prima facie, one would expect it to possess gravitational energy – contrary to Lorentz and Levi-

Civita’s proposal (cf. Dürr, 2018 for a critique). Equally implausibly, it purports that there are 

no differences between gravitational energy in the exterior of a static and, say, rotating black 

hole, respectively: in either case, gravitational energy would be zero. For NCT, the objection 

needs to be slightly adapted. NCT’s Poisson Equation is elliptic. Hence its solutions can’t 

propagate. In that sense, there is of course no gravitational radiation. Still, one would expect 

different NCT spacetimes with non-vanishing Weyl structure − i.e. different homogenous 

solutions of the Poisson Equation − to differ in their gravitational energy. (Recall that the Weyl 

tensor measures tidal deformations in the shape of extended spacetime regions.)   

Besides such doubts regarding its physical plausibility, it seems mysterious and contrived that, 

on Lorentz and Levi-Civita’s proposal, any matter energy-momentum is exactly 

counterbalanced by gravitational energy (in the GR case): in all possible spacetimes, the total 

energy always vanishes, −
1

2𝜅
𝐺𝑎𝑏 + 2𝜅𝑇𝑎𝑏 = 0. It’s elusive what positing such an entity would 

                                                           
127 Dewar and Weatherall (2018, sect. 4) show that for NCT spacetimes, one can indeed define a (non-trivial) 
Weyl tensor (cf. Ehlers & Buchert, 2009; Wallace, 2016; Duval, Gibbons & Horvathy, 2017). 
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help explain. As Levi-Civita conceded in a letter to Einstein, the proposal is sterile in that “[…] 

the energy principle would lose all its heuristic value, because no physical process (or almost 

none) could be excluded a priori. In fact, [in order to get any physical process] one only has to 

associate with it a suitable change of the [gravitational field]”. For NCT, this sterility is 

exacerbated by the fact that the Einstein tensor reduces to the Ricci tensor, and that the latter 

vanishes for mixed indices,  

𝐺𝑎
𝑏(𝑁𝐶𝑇)
≡ 𝑅𝑎

𝑏 ≡ 0
(𝑁𝐶𝑇) . 

In other words: Lorentz and Levi-Civita’s proposal yields only a trivial gravitational energy-

momentum flux along some direction 𝜉𝑎: 𝐺𝑎
𝑏(𝑁𝐶𝑇)
𝜉𝑎 ≡ 0. 

In conclusion: The Einstein tensor isn’t suited for representing gravitational energy in both GR 

and NCT; it lacks physical informativeness and plausibility. The issue of gauge-dependence 

under dynamical shifts doesn’t arise in any form.  

Let’s turn next to another tensorial proposal, Bel and Robinson’s superenergy tensor.  

V.3.3.3 The Bel-Robinson Tensor 

In this subsection, we examine the NCT counterpart of the Bel-Robinson tensor as a candidate 

for NCT’s gravitational energy.  

Recall the energy-momentum tensor of electrodynamics: 

4𝜋𝑇(𝑒𝑚)
𝜇𝜈

= 𝐹  𝜆 
𝜇
𝐹𝜆𝜈 −

1

4
𝑔𝜇𝜈 ∗ (𝐹𝜅𝜆) ∗ (𝐹𝜅𝜆), 

with the Faraday tensor 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇, and its dual ∗ (𝐹𝜇𝜈) = 𝜖𝜇𝜈𝜅𝜆𝐹𝜅𝜆. (We use the 

latter – rather than the non-dual – in the second term of the energy-momentum tensor to 

render its structural similarity with the Bel-Robinson Tensor more transparent.) In an 

analogous manner, one can construct a tensor from the Riemann tensor,128 mimicking the 

symmetric electromagnetic energy-momentum tensor (see Garecki, 2018 for details). The 

result is the so-called “superenergy tensor”:  

                                                           
128 This may be motivated by Synge’s suggestion that GR’s gravitational field is represented by the Riemann 
curvature tensor (cf. Lehmkuhl, 2008a for a critical discussion). That is: According to Synge, one should view the 
Riemann tensor as the GR counterpart to the Faraday/field strength tensor – a view backed up by the perspective 
from the fibre bundle formalism (Weatherall, 2016c).  
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𝑇𝑎𝑏𝑐𝑑 ≔ 𝑅𝑎𝑒𝑓𝑐𝑅  𝑒𝑓
𝑏    𝑑 +∗ (𝑅𝑎𝑒𝑓𝑐) ∗ (𝑅  𝑒𝑓

𝑏    𝑑)

= 𝑅𝑎𝑒𝑓𝑐𝑅  𝑒𝑓
𝑏    𝑑 + 𝑅𝑎𝑒𝑓𝑑𝑅  𝑒𝑓

𝑏    𝑐 −
1

2
𝑔𝑎𝑏𝑅𝑒𝑓𝑔𝑐𝑅𝑒𝑓𝑔

       𝑑. 

(Here, ∗ denotes the usual dual operation: ∗ (𝑅𝑎𝑏𝑐𝑑) =
1

2
𝜖𝑎𝑏𝑒𝑓𝑅  𝑐𝑑

𝑒𝑓
.) Bel and Robinson 

proposed it as a candidate for gravitational energy in GR. 

As a consequence of the Bianchi identities (and hence, independently of the Einstein 

Equations), its covariant divergence vanishes: 

∇𝑎𝑇
𝑎𝑏𝑐𝑑 ≡ 0. 

Note that due to the Einstein Equations, in vacuum the Riemann tensor can be replaced by 

the Weyl tensor. The latter encodes gravitational degrees of freedom that can propagate 

through vacuum. In light of this, the Bel-Robinson tensor seems apt for describing energy 

associated with gravitational radiation.  

What makes it of particular interest is that the Bel-Robinson tensor appears in the expansion 

of the Einstein pseudotensor at a point, when evaluated in normal coordinates for some other 

point (see So, Nester & Chen 2009 for details). 

Due to the flatness of NCT spacetimes (in the sense of 𝑅    𝑐𝑑
𝑎𝑏 = 0, §3.1), a non-trivial Bel-

Robinson tensor in NCT must be defined as a tensor of rank (1,3): 

𝑇
(𝑁𝐶𝑇)

  𝑘𝑙𝑚
𝑖 ≔ 𝑅  𝑎𝑏𝑙

𝑖 𝑅  𝑚𝑘
𝑏      𝑎 +∗ (𝑅  𝑎𝑏𝑙

𝑖 ) ∗ (𝑅  𝑚𝑘
𝑏      𝑎), 

with the Riemann tensors (and their duals), associated with the NCT connection. As the 

Bianchi identities also hold in NCT, also ∇𝑖 𝑇
(𝑁𝐶𝑇)

  𝑘𝑙𝑚
𝑖 ≡ 0 obtains.  

However, 𝑇
(𝑁𝐶𝑇)

  𝑘𝑙𝑚
𝑖  isn’t a convincing proposal for gravitational energy in NCT for reasons 

both general and specific to NCT.  

Generally (and like in GR), it has the dimensions 𝑙𝑒𝑛𝑔𝑡ℎ−4. So, neither the Bel-Robinson tensor 

nor any of its powers have the right dimension, unless one introduces a novel constant of 

nature. But this seems ad-hoc.  

Moreover, the Bel-Robinson tensor is linked to differences in pseudotensorial gravitational 

energy (and hence, on a standard interpretation of pseudotensors: to differences in 

gravitational energy simpliciter), rather than to the latter directly (ibid.). So, its physical 
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interpretation would presuppose a non-trivial notion of pseudotensorial gravitational energy. 

But as we saw in §3.3.2, the most immediate NCT counterparts to pseudotensors are vacuous.  

In conclusion: As a proposal for gravitational energy in NCT, the Bel-Robinson tensor is both 

formally, as well as in absence of its connection to non-vacuous pseudotensorial gravitational 

energy, unsuitable. Contra Dewar and Weatherall, gauge-variance isn’t the issue here, though. 

We conclude our perusal of candidates for gravitational energy in NCT with a non-tensorial 

proposal, due to Pitts.  

V.3.3.3. Pittsification 

Pitts (2010) has recently propounded an astute solution to the problem of coordinate/gauge-

dependence of pseudotensors in GR: take your favorite pseudotensor, say the Einstein 

pseudotensor 𝜗𝑎
 𝑏, and declare the totality of its values in all possible coordinate systems (at 

neighbourhood of a point)  one object. Symbolically:  

{(∀ coordinate systems CS)(𝜗𝜇
 𝜈)
𝐶𝑆
}. 

It has (uncountably) infinite components. Each corresponds to the pseudotensor’s value in 

one possible coordinate system.   

There are two ways to transfer this idea to NCT. The first one takes the NCT counterparts of 

pseudotensors, and “Pittsifies” them as in Pitts’ original proposal for GR. But this is of little 

interest, as the NCT counterparts of pseudotensors are either trivial or not defined (§3.3.1).  

More auspicious is another option. It starts from NGGST’s gravitational energy. As described in 

§3.2, a DPM in NCT 𝔐 can be de-geometrised into an equivalence class of GST models 

𝐺𝑆𝑇𝛼(𝔐) for some index set 𝛼 ∈ 𝒜. For any two 𝛼, 𝛼′ ∈ 𝒜, the models 𝐺𝑆𝑇𝛼(𝔐) and 

𝐺𝑆𝑇𝛼′(𝔐) differ only up to dynamical shifts. Now Pittsify the gravitational energies of all these 

𝐺𝑆𝑇𝛼(𝔐)s. This yields the (Pittsified) NCT gravitational energy, symbolically: 

𝐸(𝔐) ≔ {(∀𝛼 ∈ 𝒜)𝐸[𝐺𝑆𝑇𝛼(𝔐)]}. 

Each component of this object corresponds to one possible GST de-geometrisation. By 

construction, it’s gauge-invariant under dynamical shifts. (Recall: De-geometrisations of an 

NCT spacetime are all related via dynamical shifts.) 
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Pittsification welds together into one well-defined, formal object the gravitational energies of 

those GST spacetimes that correspond to the same NCT spacetime. It’s not obvious, though, 

that it provides a satisfactory representation for gravitational energy in NCT: firstly, its 

conceptual prerequisites seem alien to NCT; secondly, one may have qualms about its physical 

meaningfulness.  

The Pittsified NCT gravitational energy is constructed from the gravitational energies of those 

NGGST spacetimes the geometrisation of which yields the same NCT spacetime. On the one 

hand, this yields a formally well-defined object – even a geometric one.129 On the other hand, 

one may wonder: is it legitimate to introduce into a theory quantities built from terms that 

belong to, and are meaningful only within, a different theory? That is: Are we allowed to use 

quantities prima facie intelligible only in NGGST in order to define a quantity supposedly 

meaningful in NCT?          

Perhaps such a worry might be allayed by the thought that the individual de-geometrised 

NGGST spacetimes lack meaning in NCT; only their totality accrues it. Consider the gauge-

quantities of electromagnetism, the 4-potentials. By themselves, they don’t possess physical 

significance, either (perhaps setting aside potential subtleties for the Aharonov-Bohm effect); 

only a suitable combination of them − i.e. the Faraday tensor − does.  By analogy, one might 

argue that only the Pittsified NCT gravitational energy as a whole is meaningful; its individual 

components – the NGGST quantities – aren’t. One could counter by questioning the whole 

procedure: isn’t Pittsification too cheap a trick to procure gauge-invariant quantities? Finding 

gauge-invariant quantities is a formidable task in ongoing research in (non-Abelian) gauge 

theories. One would like more than a merely formal object: how to ensure that the Pittsified 

gravitational energy actually possesses physical significance?130 (Consider, by analogy, the 

Pittsification of the electromagnetic 4-potentials, i.e. the infinite-component object made up 

of all 4-potentials in all possible gauges. In a formal sense, it’s evidently gauge-independent. 

One would baulk, however, at attributing it physical content, as expressed in the 

electromagnetic fields.)   

                                                           
129 If one is willing to extend the standard meaning of geometrical objects to objects with infinitely many 
components (Pitts, 2010, §1-2). 
130 This is squarely related to the question of inferences from symmetries to reality: declaring the physical 
equivalence between symmetry-related models of a theory remains merely formal and verbal, unless a 
metaphysically perspicuous explication of the corresponding ontological picture is forthcoming (Møller-Nielsen, 
2017).  
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In conclusion: Via Pittsification, we can define a formal candidate for gravitational energy of a 

NCT spacetime from the gravitational energies of its corresponding NGGST de-geometrisations. 

Reasons to object to this proposal don’t include gauge-dependence; rather, they consist in 

doubts about its physical significance and conceptual adequacy.131      

V.4. Discussion 

Dewar and Weatherall (2018, pp. 26) conclude their paper with “an important lesson for how 

to understand energy in geometrized theories. […] (T)here is a deep relationship between the 

classical notions of energy, work, force, and inertia. Energy is a measure of the ability to do 

work […] But in theories in which gravitation is ‘geometrized’ in the sense that gravitation is 

understood as an inertial effect in curved spacetime, we should not think of gravitation as a 

force at all – and so, in particular, it is not the sort of thing that does work. To the contrary, 

work makes sense only as a measure of the deviation from inertial motion over some 

distance.”  

Our discussion illustrates this insight in slightly more detail.132 It shows explicitly that non-

geometrised variants of NG in the above sense –NGNST and NGGST –do allow for a well-defined 

notion of gravitational energy. Contrariwise, for NG in spacetime settings where inertial 

structure has absorbed gravity –MHST and NCT – gravitational energy faces several 

obstacles.133 The status of a prima facie central concept such as the energy associated with 

Newtonian gravitational degrees of freedom crucially depends on how Newtonian Gravity is 

interpreted.    

Dewar and Weatherall make a farther-reaching suggestion: “[…] we should understand the 

energy density of Yang-Mills fields [including electromagnetism, the authors] as relative to 

some background structure – namely, the inertial structure determined by the spacetime 

metric in general relativity” (p. 27, their emphasis). We concur with this. But it’s worthwhile 

                                                           
131 This criticism mirrors the one mounted against Pittsification of pseudotensors in GR (Dürr, 2018, §3.3).  
132 We plan to complement our and Dewar and Weatherall’s results by an investigation from the view-point of 
teleparallisation (for a conceptual introduction, see Knox, 2011). Recently, Teh & Read (2018) have shown that 
the Trautman Recovery Theorem is an instance of teleparallelisation. It will be interesting to study whether 
further illuminating insights into gravitational energy in NCT and NG can be gained by applying the machinery of 
teleparallelisation. 
133 It’s important that the notion of geometrisation relevant here is specific – the absorption of gravitational 
effects into inertial structure. Other notions of geometrisation (see Lehmkuhl, 2008b, Ch. 9) don’t seem relevant. 
Reichenbach’s geometrised toy unification of gravity and electromagnetism (Giovanelli, 2016), for instance, 
admits of the standard GR electromagnetic energy-stress tensor.        
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stressing that it implies a minor rectification of Dewar and Weatherall’s conclusion, cited 

above: it’s less the geometrisation of gravity itself –the absorption of gravitational effects by 

inertial structure- that is responsible for the difficulties in defining gravitational energy. 

Rather, it’s the existence of (sufficiently rich) inertial structure simpliciter that seems to be a 

prerequisite for a meaningful (or at least, robust, cf. Read, 2017) definition of field energies.134 

In fact, one may construe the main problem diagnosed in §2.4 for gravitational energy for 

NGMHST as a violation of this requirement: MHST’s inertial structure is too impoverished to 

even allow us to define gravitational energy; for that, the derivative operator had to be 

imported from GST. 

Our discussion also emphasised an additional difficulty for gravitational energy for NCT: the 

absence of a natural Lagrangian (or Hamiltonian) formulation. Despite the similarities with 

respect to geometrizing gravity, this makes its status more precarious than in GR. Energy is 

arguably a cluster concept. But it wouldn’t be too much of a stretch, either, to regard the 

definition of energy within the Lagrangian/Hamiltonian framework as the primary meaning of 

energy in field theories.135 Hence, we propose, not only will the comparison with Yang-Mills 

theories be rewarding, as Dewar and Weatherall suggest; it will likewise be illuminating to 

investigate the status of field energies in non-Lagrangian theories.  

                                                           
134 This point seems pertinent for all theories in which the notion of inertial trajectories becomes questionable. 
In fact, this is the case for Bohmian Mechanics (see Acuña, 2016): energy is no longer a fundamental concept. 
135 Note that Brown (2020, fn. 15; pp. 9) points out a naïve view about the intrinsic connection of energy 
(conservation) and “homogeneity of time” (i.e. invariance under time translations) arguably isn’t viable. Prima 
facie, a cluster concept view affords more flexibility. 
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This chapter:  

In those versions of Newtonian Gravity in which gravity isn’t fully geometrised, defining local 

gravitational energy seems unproblematic. Once we move to the fully geometrised Newton-

Cartan theory, however, we encounter problems akin to those in General Relativity: 

gravitational energy seems “geometrised away” then, too. 

 

The next chapter: 

Does this finding extend to other, non-Newtonian theories of gravity? We’ll next inspect a 

precursor theory of General Relativity – Nordström’s theory of gravity of 1913. 
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VI. Nordström Gravity 

 

Abstract: 

This chapter re-examines Nordström’s scalar theory of gravity (NG) – arguably the most 

convincing relativistic theory of gravity before the advent of General Relativity. It exists in two 

different forms. In Nordström’s original one (1913), NG appears to describe a scalar 

gravitational field on Minkowski spacetime. In Einstein and Fokker’s (1914) version, NG seems 

to be a spacetime theory: it reconceptualises gravitational effects as manifestations of non-

Minkowskian inertial structure. Both variants of NG give rise to three contradictory verdicts 

on the status and validity of fundamental principles: the Weak Equivalence Principle, the 

existence of gravitational energy, and energy conservation. Given the putative equivalence of 

both variants of NG, this ambiguity seems paradoxical to the spacetime realist. I’ll proffer a 

resolution from the perspective of integrable Weyl geometry: the paradoxes rest on the failure 

to recognise a more apposite spacetime setting for NG. With this new spacetime setting in 

place, both variants of NG, which prima facie look more like distinct theories, can be identified 

as notational variants of each other. 

Key words: General Relativity, Scalar Theories of Gravity, Weyl Geometry, Gravitational Energy, Energy 

Conservation, Theory Equivalence, Spacetime Realism   
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VI.1. Introduction 

In 1907, Einstein was commissioned with a review article on the burgeoning special theory of 

relativity (SR) and its applications. Only one branch of physics proved recalcitrant – gravity 

(broached in section V). Here, the quest for a relativistic theory of gravity commences. Six 

years later, in 1913, Nordström (1913b) proffered the first satisfactory candidate. Already a 

few months later, in his lecture on the status quo of relativistic theories of gravity, Einstein 

(1913) acknowledged that Nordström’s theory indeed met his four desiderata for such 

theories:  

1. Energy and momentum should be conserved. 

2. In closed systems, inertial and gravitational mass should be equal. 

3. The theory should respect covariance under Lorentz transformations. 

4. In a homogenous gravitational field, the laws of nature should take a form 

independent of the absolute value of the gravitational field. 

In Nordström’s original136 presentation of his theory, NGN, gravity is prima facie represented 

by a scalar on Minkowski spacetime. It obeys the simplest relativistic generalisation of the 

Poisson Equation of Newtonian Gravity.  

Alas, NGN is as dead as a dodo: it predicts no bending of light, and a perihelion lag. This verdict 

of NGN’s empirical inadequacy comes with hindsight, however (cf. Giulini, 2008).  It was hoped 

that observations during eclipses in 1914 (cf. Einstein, 1913, §10 and subsequent discussion) 

would adjudicate between Nordström’s and competitor theories, including Einstein’s own 

Entwurf theory (Einstein & Grossmann, 1913) predicting light-bending. The outbreak of the 

Great War dashed such hopes. (Five years later, in 1919, Eddington eventually confirmed the 

effect. By then, of course, General Relativity (GR), was enjoying pride of place in gravitational 

physics.) Around 1913, Mercury’s anomalous precession played only a subordinate role for 

theoretical developments (cf. Norton, 2005, §16). The reasons are twofold. On the one hand 

also the Entwurf theory –the only other theory considered by Einstein which also satisfied his 

above desiderata – failed to account for it. Only GR achieved a convincing explanation (see 

e.g. Earman & Janssen, 1993; Renn & Schemmel, 2012). On the other hand, owing to 

                                                           
136 Nordström (1912, 1913a) had in fact devised a cognate of his theory a year earlier. It soon proved 
objectionable in several regards (see Norton, 2005, sect. 6-8). I’ll restrict my discussion throughout the paper to 
his second theory. 
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uncertainties regarding our solar system, Mercury’s perihelion advance was largely deemed 

peripheral.    

Why bother about NGN, then except for historical reasons? Notwithstanding its empirical 

shortcomings, NGN merits the philosopher’s attention. It’s of interest for studying gravitational 

waves, the Equivalence Principle and the meaning of units.  

First, NGN is the first coherent theory that admits of gravitational radiation (cf. Laue, 1917; 

Shapiro & Teukolsky, 1993).137 Vis-à-vis GR (e.g. Misner, Thorne & Wheeler, 1973, Ch. 18), NGN 

is qualitatively different, though: it displays gravitational monopole (rather than: quadrupole) 

radiation, associated with massless spin-0 (rather than: spin-2) particles.138 NGN can therefore 

serve as a toy model for conceptual questions revolving around gravitational waves – without 

GR’s mathematical intricacies (cf. Watt & Misner, 1999 for a similar argument for another toy 

scalar theory).  

Secondly, NGN implements (some versions of) the Equivalence Principle – a feature of NGN 

Einstein praised, as reported above. A whole section will be dedicated to the issue below. 

Ironically (and unrealised by Einstein), though, his Entwurf theory defies the principle’s original 

(1907, p. 454) version: uniform acceleration and a homogenous gravitational field don’t 

produce the same physical effects − not even in infinitesimal approximation (Norton, 2018, 

§13). NGN therefore naturally lends itself as a test case for different formulations of the 

Equivalence Principle (see e.g. Norton, 1985; Dieks, 2006; Di Casola, 2014; Lehmkuhl, 2019).  

Thirdly, under the continued pressure of Einstein (Norton, 1993; 2005, §6-8), Nordström was 

forced to posit “running units” in his theory. In a natural sense (to be unpacked below), units 

in NGN are no longer fixed: the dimensions and durations of physical systems and processes 

depend on the gravitational potential. This raises questions pertinent to the status of units 

and dimensions in general (cf. Bunge, 1971). In particular, one may ponder: how to identify 

two theories, if one of them is predicated on “running” and the other on “fixed” units (cf. 

                                                           
137 Trailblazers for the idea of gravitational waves were Heaviside, Poincaré and Abraham (cf. Kennefick, 2007, 
Ch. 2). To be sure: The first (historically contingent) actual prediction of gravitational waves based on a coherent 
theory − GR − came in 1916 by Einstein (op.cit, esp. Ch. 3-5 for a historical survey).  
138 Note also in this regard the comparison with Scalar Tensor Theories. Like NGN, they also exhibit scalar radiation 
modes (see e.g. Faraoni & Capozziello, 2011, Ch. 5.4). But, by contrast to NGN, the corresponding (spin-2) graviton 
is massive, and of dipole nature in leading order.   
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Dicke, 1962; Quiros et al., 2013)? This feature of NGN will lie at the heart of the subsequent 

analysis.  

In 1914, Einstein and Fokker showed that, besides Nordström’s scalar field variant, NG also 

possesses an equivalent, purely metric representation – NGEF. The nature of this equivalence 

is noteworthy in its own right, as we’ll see. But also by itself, NGEF is conceptually remarkable 

(little appreciated at the time, though): it’s a generally covariant spacetime theory of gravity, 

conforming to the Action-Reaction Principle!  

First and foremost, like GR, NGEF admits of a geometric interpretation (in the sense of strength-

3 geometrisation in Lehmkuhl, 2009): gravitational effects can be reconceptualised as a 

manifestation of NGEF’s non-flat spacetime geometry itself.139 Deepening our understanding 

of NGEF’s geometrisation of gravity and its ramifications will thus also shed light on more 

complex geometrised theories of gravity, such as GR or f(R) Gravity. 

Secondly, NGEF is fully generally covariant140; its formulation doesn’t presuppose a preferred 

set of coordinate systems (pace Einstein and Fokker (1914, §2), whose remarks suggest 

otherwise). Ironically, at this point, Einstein had already (temporarily) abandoned general 

covariance (Stachel, 1989; Norton, 1993x, 2005; Janssen & Renn, 2015). (Grossmann and 

Einstein’s Entwurf field equations are of limited covariance, see Norton, 1984; Renn, 2007.) 

This is, of course, the story of Einstein’s misadventures with the Hole Argument (e.g. Norton, 

1984, 1987; Stachel, 2014).  

Thirdly, Einstein used to tout satisfaction of the Action-Reaction Principle as the principal 

epistemological improvement of GR over SR (see Brown & Lehmkuhl, 2013): GR’s 

chronogeometric and inertial structure affect matter, while at the same time, matter affects 

−backreacts upon − them in turn. Despite the presence of an absolute element in the sense of 

Anderson (1967, 1971; cf. Friedman, 1983, Ch. 2,3) − viz. the Minkowskian light-cone structure 

− NGEF satisfies the Action-Reaction Principle: its full metric (more precisely: the latter’s 

conformal factor) is determined by matter. NGEF therefore is a promising test case for different 

                                                           
139 As Lehmkuhl (2014) has shown, Einstein himself rejected this interpretation, Instead, he championed a 
unificatory interpretation of GR: the gravito-inertial field, represented by the connection, subsumes both gravity 
and inertia.  
My subsequent discussion will refer only to GR’s nowadays more orthodox spacetime interpretation. Prima facie, 
NGEF seems no less amenable to Einstein’s unificatory interpretation than GR. 
140 This means that Nordström Gravity (in the Einstein-Fokker formulation) is indeed the first generally covariant 
spacetime theory (pace Norton, 2019, sect.2) – albeit perhaps unrecognised. 
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definitions of absolute objects (see e.g. Pitts, 2006), general covariance (see e.g. Norton, 1993, 

Pooley, 2009), or background independence (see e.g. Read, 2016; Teitel, 2019).  

NG’s preceding features are intimately intertwined with three conundrums (“Mysteries”). 

Upon them the present chapter will focus. The Mysteries concern the following three facts:  

• (M1): Prima facie, NGN violates the Geodesic Principle: test particles don’t follow NGN’s 

spacetime geodesics; a universal force deflects them from straight (Minkowskian) 

trajectories. In NGEF, by contrast, test particles follow NGEF’s (non-Minkowskian) 

geodesics. The Geodesic Principle seems satisfied.  

 

• (M2): In NGN, one can assign the scalar degree of freedom an energy-stress tensor. 

Thus, NGN appears to admit of a meaningful notion of gravitational energy. 

In NGEF, by contrast, in defining gravitational energy one encounters similar challenge 

as in GR: qua the absorption of gravitational degrees of freedom by NGEF’s spacetime 

structure, gravitational energy becomes a compromised notion both formally and 

interpretatively. 

 

• (M3): In NGN, only the sum total of energy of (non-gravitating) matter and gravity is 

conserved. In NGEF, by contrast, only the energy of (non-gravitational) matter is.  

(M1), (M2) and (M3) implicate core concepts of modern gravitational theories. This renders 

their prima facie ambiguous, theory-dependent status unsettling. Both the Geodesic Principle 

–as a generalisation of Galilei’s Law of Inertia- and total energy conservation arguably are 

fundamental principles. As such, whether they hold or not should be an absolute fact, 

independent of one’s choice of either NGN or NGEF. Likewise, energy is a pivotal notion in all 

of physics. Moreover, whether a physical quantity bears a certain amount of energy (and a 

fortiori: whether it bears energy at all) should be an absolute fact, quite apart from one’s 

predilection for either NGN or NGEF. The point is aggravated by the fact that both are 

standardly referred to as reformulations of each other: this suggests that they are 

representational variants of the same theory. But then how can the status of the Geodesic 

Principle, gravitational energy and energy conservation hinge on the conventional choice of a 

theory’s representation? 
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In what follows, I’ll debunk the Three Mysteries (M1)-(M3) as merely apparent. They originate 

in a facile characterisation of NG’s spacetime structure, in conjunction with a spurious 

identification of a scalar gravitational field as NGN’s referent.  

My analysis will proceed as follows. In §2, I’ll review the basics and interpretation of NG in 

both Nordström’s original version (§2.1), as well as Einstein and Fokker’s field theoretic 

version (§2.2). §3 casts into sharper relief the above Three Mysteries: (M1), pertaining to 

energy conservation (§3.1), (M2), pertaining to gravitational energy (§3.2), and (M3), 

pertaining to total energy conservation (§3.3). In §4, I’ll clarify the empirical and theoretical 

relationship between NGN and NGEF. Thereby, the paradoxes constituted by (M1)-(M3) will 

be resolved. §5 summarises some wider-reaching lessons from the analysis, given in this 

chapter. 

VI.2. Nordström Gravity 

In this section, I’ll first (§2.1) outline Nordström’s original formulation of NG, NGN. I’ll then 

turn to Einstein and Fokker’s geometric reformulation, NEF (§2.2).141  

VI.2.1. Nordström’s Theory 

Nordström’s 1913 formulation, NGN, casts NG in the guise of a theory of a scalar gravitational 

field on Minkowski spacetime.  

That is, NGN’s kinematically possible models (KPMs) consist of the quintuple 

〈ℳ, 𝜼, 𝜵, 𝜙,𝜳〉. ( 1 ) 

Here, ℳ and 𝜼 denote the manifold of spacetime points (events), and the Minkowski metric 

on it, respectively.142 The derivative operator (“connection”) 𝛁 is assumed to be compatible 

with it: 𝛁 ∙ 𝜼 ≡ 0. The scalar 𝜙:ℳ → ℝ encodes the gravitational degree of freedom. The 

generic 𝚿 represents NGN’s (non-gravitational) matter fields. 

                                                           
141 NG‘s historical development, as well as their role in the genesis of GR are recounted in Pais (1982), Ch. 13; 
Isaakson (1985) and Norton (1993, 2005).  
142 I’ll adopt the sign convention such that in Cartesian coordinates, the Minkowski metric simplifies to 𝜂𝜇𝜈 =

diag(−1,+1,+1,+1). 
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NGN’s dynamically possible models143 (DPMs) are picked out from its KPMs via a field equation 

for 𝜙 and the non-gravitational matter dynamics for 𝚿.144 

The former is furnished by a nonlinear inhomogeneous wave-equation on a Minkowski 

background. It relates the gravitational scalar and the matter degrees of freedom:145 

□𝜙 = −
4𝜋

1+𝜙
𝑇. ( 2 ) 

Here, □ ≔ 𝛁 ∙ 𝛁 ≡ 𝜂𝑎𝑏∇
𝑎∇𝑏 denotes the special-relativistic d’Alembertian wave-operator. On 

the r.h.s.,  𝑇:= 𝑡𝑟𝜼{𝑻} ≡ 𝜂𝑎𝑏𝑇
𝑎𝑏 denotes the trace of the energy-stress tensor of (non-

gravitational) matter. This incorporates Einstein and Grossmann’s earlier argument (1913, 

§1.7) that one should utilise 𝑇 as the source density for a scalar theory of gravity.    

Two remarks on 𝑻 are in order. First, energy-stress tensors were introduced in the context of 

the relativistic theory of stressed continua by Laue only two years earlier, in 1911 (see Norton, 

2005, §9 for details). Note, however, that the modern variational definition of energy-stress 

tensors was developed later by Hilbert (1915). Below, bridging their historical and modern 

usage, all energy-stress tensors will be defined variationally. Secondly, the energy-stress 

tensor on the r.h.s. of eq. (2) isn’t the standard special-relativistic energy-stress tensor: it 

depends on the scalar, as we’ll see shortly (thanks to the greater clarity of the variational 

definition of energy-stress).      

Let’s now turn to NGN’s matter sector. Historically, it was confined to test matter in the form 

of (uncharged) massive particles (and, by continuity considerations, perfect fluids, see 

Deruelle & Sasaki, 2011). At this juncture, a systematic extension to more general types of 

matter will have to be postponed to §4.3.2.  

It will be convenient to formulate NGN via an action principle. (I’ll roughly follow Einstein, 

1913, §3). NGN‘s total action for 𝜈 = 1,… ,𝑁 particles with the respective proper times 𝜏𝜈, 

(affinely parameterised) worldlines 𝑿(𝜈) and masses 𝑚(𝜈), is given by 

                                                           
143 Van Fraassen (1980, p. 53) identifies a model of a theory as “any structure which satisfies the axioms of [that] 
theory“. Following common practice in the spacetime philosophy literature, I‘ll henceforth identify models in Van 
Fraassen’s sense with DPMs. 
144 For simplicity, I’ll use Planck units throughout: 𝐺 = 𝑐 = ℏ = 1 (see e.g. Wald, 1984, Appendix F for a 
conversion table).  
145 For ease of comparison with Newtonian Gravity, the scalar is chosen such that in NGN’s Newtonian limit, 𝜙 →
0. 
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𝑆𝑡𝑜𝑡[𝜼, 𝜙, 𝑿(𝜈)] = −
1

8𝜋
∫𝑑4𝑥 √|𝜂|(𝛻𝜙)2 −∑𝑚(𝜈)∫𝑑𝜏𝜈

𝜈

 

                    −∑ 𝑚(𝜈) ∫𝜙𝑑𝜏𝜈𝜈 . ( 3 ) 

It encompasses three components. The purely gravitational, free-field contribution is supplied 

by 𝑆𝑔[𝜼, 𝜙] ≔ −
1

8𝜋
∫𝑑4𝑥 √|𝜂|(∇𝜙)2, where (∇𝜙)2 ≔ 𝑡𝑟𝜼{𝛁𝜙⨂𝛁𝜙}. The free-particle 

contribution is imported from SR: ∑ 𝑚(𝜈) ∫ 𝑑𝜏𝜈𝜈 . The third term, −∑ 𝑚(𝜈) ∫𝜙𝑑𝜏𝜈𝜈 , 

encapsulates the field-particle interaction term. Together, the free-particle contribution and 

the interaction term form the effective matter action, 𝑆𝑚[𝜼, 𝜙, 𝑿(𝜈)] ≔ ∫(1 +

𝜙)∑ 𝑚(𝜈)𝑑𝜏𝜈𝜈 . Crucial for NGN is the fact that the gravitational scalar (1 + 𝜙) couples non-

minally (viz. directly) and universally to the gravity-free matter Lagrangian density ∑ 𝑚(𝜈)𝑑𝜏𝜈𝜈  

(more on this below).  

Impose now Hamilton’s Principle, 0 = 𝛿𝑆𝑡𝑜𝑡 ≡ 𝛿𝜙
𝛿𝑆𝑡𝑜𝑡

𝛿𝜙
+ 𝛿𝑿(𝜈) ∙

𝛿𝑆𝑡𝑜𝑡

𝛿𝑿(𝜈)
, with the independent 

variables 𝜙 and 𝑿(𝜈). We then obtain the field equation for the scalar and the equations of 

motion for the particles. Both can be expressed economically via the energy-stress tensor (cf. 

Giulini, 2008; Uzan & Deruelle, 2014, Ch.10): 

𝑻(𝑥):= −
2

√|𝜂|

𝛿

𝛿𝜼
𝑆𝑚 = ∑

𝑚(𝜈)

√|𝜂|
∫(1 + 𝜙)𝛿4(𝑥 −𝜈

𝑋(𝜈)(𝜏𝜈)) �̇�(𝜈)⨂�̇�(𝜈)𝑑𝜏𝜈 . ( 4 ) 

This allows us to rewrite the matter action as: 

𝑆𝑚 = −∫𝑑
4𝑥 √|𝜂|𝑡𝑟𝜼{𝑻} =:−∫𝑑

4𝑥 √|𝜂|𝑇. ( 5 ) 

𝛿𝑆𝑡𝑜𝑡

𝛿𝜙
= 0 then implies the gravitational field equation (2) for the scalar:  

□𝜙 = −4𝜋(1 + 𝜙)−1𝑇. ( 6 ) 

From  
𝛿𝑆𝑡𝑜𝑡

𝛿𝑿(𝜈)
= 0, the equations of motion for matter ensue:  

𝜵 ∙ 𝑻 = 𝑇𝜵 𝑙𝑛(1 + 𝜙). ( 7 ) 

Eq. (5) and (6) are NGN’s constitutive equations (for test matter).  

For static weak fields, they reduce in leading order to the Newtonian case. Eq. (2) becomes 

the Poisson Equation for Newtonian Gravity: 
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∆𝜙 = 4𝜋𝜚, ( 8 ) 

with the mass density 𝜚(𝑥 ) = ∑ 𝑚(𝜈)𝜈 𝛿3(𝑥 − 𝑥 (𝜈)). Eq. (7) becomes the equation of motion 

for particles subject to the Newtonian gravitational force: 

𝑚(𝜈)
𝑑²

𝑑𝑡²
𝑥 (𝜈) = −𝑚(𝜈)

𝜕

𝜕𝑥 
𝜙|
𝑥 (𝜈)
. 146 ( 9 ) 

Outside the Newtonian regime, NGN’s equations of motion yield the 4-forces acting on 

particles. For non-vanshing 𝑇, one obtains (following e.g. Hobson, Efstathiou & Lasenby, 2006, 

Ch. 8.8): 

𝐷

𝐷𝜏𝜈
𝑼(𝜈) ≔ 𝜵𝑼(𝜈)𝑼(𝜈) = −𝜵 𝑙𝑛(1 + 𝜙) +

𝑑

𝑑𝜏𝜈
𝑙𝑛(1 + 𝜙)𝑼(𝜈) ( 10 ) 

Without the first term on the r.h.s., this describes a (non-affinely parameterised) geodesic of 

Minkowski spacetime (see e.g. ibid., Ch. 3.17). Through a suitable redefinition of the affine 

parameter, one can eliminate it. Hence, under the influence of gravity, massive particles are 

accelerated by −𝛁 ln(1 + 𝜙). In the corresponding 4-force equation, gravity acts like a 

universal force: It distracts massive particles from geodesic trajectories. Massless particles, 

however, such as a photon fluid (recall that for a radiative fluid: 𝑇 ≡ 0), one may expect not 

to be affected:  in the limit 𝑚𝜈 → 0, the r.h.s of eq. (7) vanishes; massless particles follow 

Minkowskian geodesics. Note also that for a constant scalar, 𝜙 = 𝑐𝑜𝑛𝑠𝑡., eq. (10) reduces to 

the geodesic equation on Minkowski spacetime.  

The universality of Nordströmian Gravity stems from the direct coupling of NGN’s scalar to the 

matter variables in eq. (5). It results in a 𝜙-dependence of measurable, “natural distances” 

(Einstein, 1913) – as opposed to merely “coordinate distances”: in the presence of a 

gravitational field, the length 𝐿0 of a rod, or the time units  𝑇0 elapsed during periodic 

processes (other than light-clocks) varies as 𝐿 = (1 + 𝜙)𝐿0 and 𝑇 = (1 + 𝜙)−1𝑇0, 

respectively.  

 

VI.2.2. Einstein-Fokker Theory 

                                                           
146 Thus, NGN provides an eliminative explanation of the equality of Newtonian inertial and gravitational mass 
(see e.g. Beckermann, 2008, Ch. 8): The latter is reduced to the inertial masses 𝑚(𝜈) (cf. Weatherall, 2011).   
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Let’s turn to Einstein and Fokker’s presentation of the theory – NGEF. It casts NG in a purely 

metric form. NGEF is naturally (but not historically) interpreted as a theory of a (non-flat) 

spacetime.  

Einstein and Fokker (1914) showed that NGN, as introduced in §2.1, admits of a mathematically 

equivalent representation. Their approach is motivated by three steps. (For simplicity, I’ll 

consider a 1-particle system.) First, express NGN’s matter action (for test-particles) via the new 

line-element 𝑑�̃� ≔ √|(1 + 𝜙)2𝜼(𝒅𝒙,𝒅𝒙)|:  

𝑆𝑚 = ∫(1 + 𝜙) 𝑑𝑠 = ∫𝑑�̃�. ( 11 ) 

We can conceive of 𝑑�̃� as the line element of the effective metric 𝒈 ≔ (1 + 𝜙)2𝜼. The latter 

is the metric to which the matter dynamics adverts: it measures NGN’s “natural distances”, 

monitored by rods and clocks. 𝒈 thus represents the NG’s effective gravitational degrees of 

freedom. 

Secondly, following Einstein and Grossmann, Einstein and Fokker opt for the trace of the 

energy-stress tensor, 𝑇[𝒈,𝚿] ≡ 𝑡𝑟𝒈{𝑻[𝒈,𝚿]} as the source term for their gravitational field 

equation. (The notation 𝑻[𝒈,𝚿] signifies the fact that the energy-stress tensor is defined 

relative to the metric 𝒈, cf. Lehmkuhl, 2011. This is relevant for the variational definition of 

the energy stress tensor, 𝑻[𝒈,𝚿] ≔ −
2

√|𝑔|

𝛿

𝛿𝒈
𝑆𝑚.)  

In their third step, Einstein and Fokker prescribe that the field dynamics be only second order 

in first derivatives of 𝒈, but linear in second derivatives. This fixes the possible dynamical term 

for 𝒈: it must be a constant multiple of the Ricci scalar 𝑅[𝒈], associated with 𝒈  (Vermeil, 

1917147).      

Combining all three steps, one arrives at the following stipulation for NGEF’s field equation: 

𝑅[𝒈] = 𝜆𝑇[𝒈,𝜳], ( 12 ) 

for some coupling constant 𝜆. (The latter is determined to be −24𝜋 via the Newtonian limit.)  

More axiomatically, one postulates that NGEF’s KPMs consist in the quadruple 

〈ℳ,𝒈, 𝜵
(𝒈)

, 𝜳〉. ( 13 ) 

                                                           
147 I’m unaware of an earlier publication of this result. It’s unclear to me whether Einstein and Fokker anticipated 
this result, or whether they had access to an unpublished proof.  
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As before, ℳ and 𝚿 denote the manifold of events, and the matter degrees of freedom, 

respectively. Now, however, 𝒈 is a generic Lorentzian manifold, i.e. of signature (−,+,+,+). 

𝛁
(𝒈)

 is its associated Levi-Civita connection (compatible with it, 𝛁 ∙ 𝒈 = 𝟎
(𝒈)

).  

NGEF’s DPMs are picked out by imposing two algebraic curvature conditions for the 

gravitational sector, and the equations of motion for the matter sector.  

The first curvature condition is the global requirement that 〈ℳ,𝒈〉 be Weyl-flat:  

𝑪[𝒈] = 𝟎. ( 14 ) 

Here, 𝑪[𝒈] denotes the Weyl tensor associated with 𝒈, i.e. the trace-free part of the latter’s 

Riemann tensor, 𝑹𝒊𝒆𝒎[𝒈] associated with 𝛁
(𝒈)

. That is, the components of the Weyl tensor 

are defined as (see e.g. Weinberg, 1972, pp. 145):  

𝐶𝑎𝑏𝑐𝑑 = 𝑅𝑎𝑏𝑐𝑑 +
1

3
𝑔𝑎[𝑐𝑔𝑏]𝑑𝑅 − 𝑔𝑎[𝑐𝑅𝑑]𝑏 + 𝑔𝑑[𝑐𝑅𝑑]𝑏𝑎. ( 15 ) 

Condition (14) imposes a “prior geometry” (Misner, Thorne & Wheeler, 1973, §17.6): It 

compels the metric to be “conformally flat”, i.e. of the form 𝒈 ≡ √
|𝑔|

|𝜂|

4
𝜼.148  

NGEF’s second curvature condition supplies the dynamics for the metric residual degrees of 

freedom. They are essentially encoded in the Ricci curvature. Relating the latter’s trace and 

that of the energy-stress tensor (as the source), we obtain NGEF’s dynamical evolution for 𝒈:    

𝑅[𝒈] = −24𝜋𝑇[𝒈,𝜳]. ( 16 ) 

For test matter, the energy-stress tensor 𝑻[𝒈,𝚿] is procured via the “minimal substitution 

rule” (Wald, 1984, p. 70), familiar from GR, i.e. by making the following replacements in the 

special-relativistic expression: 

                                                           
148 Geometrically (for all details see e.g. Malament, 2012, Ch. 1.9), this means that the spacetime’s light-
cone/causal structure is Minkowskian: vectors that are time-like (space-like) with respect to 𝒈 are also time-like 
(space-like) with respect to 𝜼, and vice versa. Furthermore, all angles between vectors defined with respect to 𝜼 
are same as those defined respect to 𝒈. (A cloud of incoherent dust illustrates this: in a conformally flat spacetime 
manifold, its shape doesn’t vary across it; only its volume can change (see e.g. Carroll, 2004, pp. 167; Poisson, 
2004, Ch. 2 for details).  
Recall, however, that flat and merely conformally flat spacetimes don’t share the same geodesic structure: whilst 
they agree on which curves (up to re-parameterisation) count as null-geodesics, they differ on which curves count 
as time-like geodesics. 
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{
𝜼

𝜵
(𝜼) → {

𝒈

𝜵
(𝒈) . 149 ( 17 ) 

For instance, a perfect fluid as test matter with energy density  𝜚 and pressure 𝑃 the energy-

stress tensor  reads  

𝑻(𝑝𝑓) = (𝜚 + 𝑃)𝒖⨂𝒖+ 𝑃𝒈. ( 18 ) 

With this, we can formulate NGEF’s equations of motion for matter. They are given by the 

vanishing covariant divergence of the energy-stress tensor   

𝜵
(𝒈)

∙ 𝑻(𝑝𝑓) = 0. ( 19 ) 

From this, one educes that NGEF’s inertial structure is given by the connection 𝛁
(𝒈)

: Freely 

falling test particles, including photons, trace out the geodesics associated with it. (The 

argument, e.g. Hobson, Efstathiou & Lasenby (2006), Ch. 8.8 carries over verbatim from GR.) 

Due to metric compatibility, such geodesic paths also extremise the line element 

∫√|𝒈(𝒅𝒙, 𝒅𝒙)|.  

NEF’s field equations (14) and (16) for 𝒈 now turn out to be mathematically equivalent to NGN’s 

field equation (2) for 𝒈’s conformal factor, i.e.  1 + 𝜙 ≔ √|𝑔|
8

. That is: A DPM of NGEF, 

〈ℳ,𝒈, 𝛁
(𝒈)

, 𝚿〉, determines a DPM of NGN, 〈ℳ, 𝜼, 𝛁
(𝜼)

, √|𝑔|/|𝜂|
8

− 1,𝚿〉; conversely, a DPM 

of NGN, 〈ℳ, 𝜼, 𝛁
(𝜼)

, 𝜙,𝚿〉 determines a DPM of NGEF, 〈ℳ, (1 + 𝜙)2𝜼, 𝛁
((1+𝜙)2𝜼)

, 𝚿〉. 

How to interpret NGEF? Like GR, NGEF is purely metric (cf. Will, 1993, esp. Ch. 3). There exists 

only one metric. It encapsulates all information about the gravitational degrees of freedom. 

All inner products that enter the matter dynamics are taken relative to  𝒈 (rather than to 𝜼, 

or any other metric). Consequently, 𝒈 is invested with chronogeometric significance: ideal 

clocks survey the proper time 𝑑�̃� = √|𝒈(𝒅𝒙,𝒅𝒙)|. In NGEF, “naturally measured” and 

“coordinate” quantities in Einstein’s sense coincide.       

It therefore seems apt to interpret NGEF in analogy to GR − as a geometric theory of gravity 

(cf. Friedman, 1983, esp. Ch. V; Stachel, 2002; Lehmkuhl, 2009, Part III; Weatherall, 2017b, 

§6): gravitational effects are expressed via the spacetime geometry, represented by the triple 

                                                           
149 This precept is little more than a pragmatic rule of thumb. It’s known to be ambiguous. Nor is its compatibility 
with (some versions of) the Strong Equivalence Principle clear (cf. Di Casola, Liberati & Sonego,  2015, sect. IV; 
Read, Lehmkuhl & Brown, 2017). 



178 
 

〈ℳ,𝒈, 𝛁
(𝒈) 〉. That is: NGEF reduces gravity to dynamical, non-Minkowskian chronogeometry 

and inertial structure, represented by 𝒈 and 𝛁
(𝒈)

, respectively (Nerlich, 2013; Lehmkuhl, 2014, 

esp. sect. 2).150  

In summary: NGN is set up as a theory about a scalar field on Minkowski spacetime. It’s 

governed by a non-linear Klein-Gordon equation. The gravitational potential’s direct and 

universal coupling to matter elicits a dependence of measurable length and durations on the 

scalar. By contrast, in analogy to the Einstein field equations, NGEF is set up as a theory about 

spacetime: Gravitational effects exhibit non-Minkowskian geometry chronogeometry and 

inertial structure. Each model of NGN defines a model of NGEF, and vice versa. 

Let’s now home in on a puzzling fact about NG: at first blush, it appears to depend on which 

variant one adopts −NGN or NGEF− whether certain putatively fundamental principles hold. 

This is in tension with either a naïve understanding of the physical equivalence between NGN 

and NGEF, or a naïve realism about spacetime.  

VI.3. Crisis: Three Mysteries  

In this section, I’ll examine whether the following is true in our two variants of NG, reviewed 

in §2: 

1. Does the Geodesic Principle hold? (§3.1)  

2. Does gravitational energy exist? (§3.2) 

3. Is total (gravitational cum matter) energy conserved? (§3.3) 

NGN and NGEF appear to give different responses. This prima facie paradoxical equivocation 

constitutes NG’s titular three mysteries. 

VI.3.1 First Mystery: Geodesic Principle 

The first paradox concerns spacetime geodesic motion: in NGEF, it counts as inertial/force-free 

motion; in NGN, it doesn’t. 

                                                           
150 I won’t embroil myself in the controversy over whether spacetime is a fundamental entity, or whether it’s 
reducible to more fundamental (matter) degrees of freedom. The above interpretation of NGEF (and of GR) 
remains neutral in the debate between advocates of the “dynamical” and “geometric” approach to spacetime 
(e.g. Brown & Read, forth.). 
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Following Einstein (Lehmkuhl, 2014; cf. DiSalle, 2009; Petkov, 2012), one may regard the 

Geodesic Principle151 (GP) as a generalisation of Galilei’s Law of Inertia to curved spaces: A 

(test) body’s spatiotemporal trajectory is a geodesic of the spacetime manifold. GR satisfies 

the GP (see e.g. Di Casola, Libertati & Sonego, 2015; Lehmkuhl, 2019).152  

NGN, by contrast, doesn’t. If its spacetime is Minkowskian, according to the GP, test particles 

under the should follow Minkowskian geodesics – straight lines. The second term on the r.h.s. 

of eq. (10) prevents this: it deflects massive particles from Minkowksian geodesics. 

Contrariwise, the GP’s status in NGEF is exactly like in GR: test particles do trace out NGEF’s 

spacetime geodesics – those associated with 𝛁
(𝒈)

. The GP holds.  

This finding presents is puzzling: how can the GP as a generalised Law of Inertia – and hence 

as a fundamental principle – hold in one formulation of NG (viz. NGEF), but not hold in the 

other (viz. NGN)? Isn’t it an objective fact, independent of the conventional representation of 

a theory, whether a force is exerted on a particle or not?  

This I’ll dub the first mystery of NG – (M1). 

VI.3.2. Second Mystery: Status of gravitational energy 

NG’s second paradox concerns the status of gravitational energy: NGN’s gravitational scalar 

has a standard energy-stress associated with it; in NGEF, by contrast, scepticism about the 

meaningfulness of gravitational energy-stress is apposite.  

Prima facie, NGEF’s gravitational energy-stress appears unproblematic. The purely 

gravitational action for its scalar is a standard Klein-Gordon scalar (e.g. Wald, 1984, Appendix 

E1): 

𝑆𝑔[𝜼, 𝜙] = −
1

8𝜋
∫𝑑4𝑥√|𝜂| (𝜵𝜙)2. ( 20 ) 

                                                           
151 I forgo the label “Weak Equivalence Principle“. Thereby, I hope to preempt possible confusions that allusion 
to the Equivalence Principle tends to engender. 
Norton (2005, fn. 29; cf. Di Casola, Libertati & Sonego, 2015) writes: “The equality of inertial and gravitational 
mass, and the uniqueness [read: universality, P.D.] of free fall are distinct from the principle of equivalence.” 
Norton also notes (p.22) that in the historical debate between Einstein and Nordström, both use different 
versions of the Equivalence Principle (cf. Norton, 1985). 
152 In a certain limit sense, the GP in GR can even be generalised to extended massive and massless bodies, subject 
to certain energy conditions (Di Casola, Liberati & Sonego, 2014; Geroch & Weatherall, 2018; Weatherall, 2018; 
cf. Tamir 2012, 2013). 
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From this, energy-stress for NGN’s scalar is defined canonically as153  

𝜣:= −
2

√|𝜂|

𝛿

𝛿𝜼
𝑆𝑔[𝜼, 𝜙] = −

1

8𝜋
(𝜵𝜙⨂𝜵𝜙 −

1

2
(𝜵𝜙)2𝜼). ( 21 ) 

Noether’s Theorem (alternatively: eq. (7)) guarantees that 𝐓 and 𝚯 together are conserved: 

𝛁 ∙ (𝑻 + 𝚯) = 𝟎.  

The extant literature, both historical and contemporary (e.g. Pais, 1982, p.234; Norton, 2005, 

pp. 57; Giulini, 2008, sect. 6.2; Gourgoulhon, 2012, p. 717) concurs with this stance: 𝚯 is 

identified as gravitational energy.  

In NGEF, things are more delicate (and not considered in the historical material). One difficulty 

is that NGEF‘s above (historical) presentation employs no Lagrangian. Hence, NGEF’s 

counterpart to NGN’s canonical gravitational energy-stress 𝚯 isn’t obvious.  

Three remedies spring to mind: the canonical energy-stress obtained from a naïve Lagrangian 

formulation, the NGEF counterparts of general-relativistic pseudotensors, and Einstein tensor 

for NGEF’s metric. None, I submit, is persuasive.    

By dint of a Lagrange multiplier 𝜆𝑎
  𝑏𝑐𝑑 with the symmetries of the Weyl tensor, a suitable 

Lagrangian density for NGEF is easily constructed (Deruelle, 2011, sect. VIII): 

�̃�[𝑔, 𝜆] = √|𝑔|(𝑅[𝑔] + 𝜆𝑎
  𝑏𝑐𝑑𝐶𝑏𝑐𝑑

𝑎 [𝑔]). ( 22 ) 

Here, R[g] and 𝐶𝑏𝑐𝑑
𝑎 [g] denote the Riemann scalar and the Weyl tensor of the (a priori 

unspecified) Lorentzian metric g, respectively.  

Variation of ∫𝑑4𝑥 �̃� with respect to both the metric and the Lagrange multiplier entails NGEF’s 

vacuum field equations (14) and (16). One may now be tempted to define gravitational 

energy-stress variationally, analogously to matter energy-stress:   

�̃� ≔ −
2

√|𝑔|

𝛿

𝛿𝒈
∫𝑑4𝑥 �̃�. ( 23 ) 

The result, however, depends on the Lagrange multiplier 𝜆𝑎
  𝑏𝑐𝑑. The latter is under-

determined. This mars �̃� ‘s physicality: �̃� isn’t a well-defined physical quantity. 

                                                           
153 Recall that for a scalar field, the canonical (Noetherian) energy-stress automatically coincides with the 
Hilbertian (variational) energy-stress. 
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A second approach to gravitational energy-stress in NGEF draws inspiration from general-

relativistic pseudo-tensors (see e.g. Goldberg, 1958; Trautman, 1962). In GR, they are the most 

widely considered candidates for gravitational energy-stress (see e.g. Misner, Thorne & 

Wheeler, 1973, §20).  

For concreteness, consider the Einstein pseudotensor. In Dirac’s (1996, Ch. 32) form it reads:  

16𝜋√|𝑔|𝜗𝑎
  𝑏[𝒈] ≔ (𝛤𝑐𝑑

𝑏 − 𝛿𝑐
𝑏𝛤𝑐𝑒

𝑒 )𝜕𝑎(√|𝑔|𝑔
𝑐𝑑) − √|𝑔|𝛿𝑎

𝑏𝑔𝑐𝑑(𝛤𝑐𝑑
𝑒 𝛤𝑒𝑓

𝑓
− 𝛤𝑐𝑒

𝑓
𝛤𝑑𝑓
𝑒 ). ( 24 ) 

Here, Γ𝑏𝑐
𝑎 = {

𝑎
𝑏𝑐
}
𝒈

denote the connection coefficients of 𝛁
(𝒈)

, i.e. the Christoffel symbols of 

g‘s Levi-Civita connection. 

The Einstein pseudotensor accords with intuitive desiderata for gravitational energy. For 

instance, it obeys the continuity equation 𝜕𝑏 (√|𝑔|(𝜗𝑎
  𝑏 + 𝑇𝑎

𝑏)) = 0, commonly interpreted 

as expressing energy conservation. Like the energy-stress of other relativistic fields, it’s built 

from only up to first derivatives in the field variable (here: the metric). Furthermore, it reduces 

to the gravitational energy of Newtonian theory.  

Now define 𝜗𝑎
  𝑏[𝒈] in NGEF by substituting the general-relativistic metric by NGEF’s metric g. 

(Via the variational formulation given in §4.2, the canonical energy-stress associated with 𝒈 

turns out to be the general-relativistic pseudotensor, evaluated for NGEF’s 𝒈. In particular, the 

continuity equation needn’t be postulated separately.) The result inherits the merits 

commending pseudotensors in GR as candidates for gravitational energy.  

Unfortunately, pseudotensors thus imported from GR also inherit the familiar flaws.  As in GR, 

pseudotensors in NGEF defy a straightforward interpretation: they are “viciously coordinate-

dependent” (Pitts, 2009, p. 16). That is: Only under affine transformations do equations 

featuring pseudotensors remain invariant. The symmetries of pseudotensors, and those of the 

spacetime don’t align. In particular, they don’t transform like 3-tensors under generic purely 

spatial transformations, tantamount to merely conventional re-labellings of points in space 

(Horský & Novotný, 1969, p. 431; cf. also Stachel, 2002, p. 4). In other words: Pseudotensors 

aren’t geometric objects in the sense of Anderson (1967, 1971). In more detail, the covariance 

group for pseudotensors is the group of linear transformations 𝐺𝐿(1,3). NGEF’s spacetime 

symmetry group, on the other hand, is the conformal group 𝐶(1,3) (Pitts, 2018). The latter 

comprises besides two linear subgroups (corresponding to Poincaré transformations and 
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dilatations/rescalings), also a non-linear subgroup, (corresponding to so-called special 

conformal transformations, see e.g. Schottenloher, 2008 for details). This mismatch between 

the symmetries of the pseudotensors and those of NGEF’s spacetime renders the physical 

significance of pseudotensors questionable (cf. Duerr, 2018b §3.2; 2019). One may discard 

them as gauge-quantities.154 

The same problem afflicts non-tensorial objects more generally. As candidate objects for 

representing gravitational energy, they are indeed ineluctable in purely metric theories. 

According to a recent theorem by Curiel (2018), there exists no tensor that satisfies the natural 

desiderata for gravitational energy-stress, apart from the Einstein tensor. (The proof doesn’t 

hinge on the Einstein Equations. Curiel’s result equally applies to NGEF and metric theories in 

general.).  

This leads to a third candidate for NGEEF’s gravitational energy-stress: what about the Einstein 

tensor itself, 𝐆 ≔ 𝐑𝐢𝐜 −
1

2
𝑅𝒈 for NGEF’s metric g?155  

At first blush, the proposal augurs well. 𝐆 is a bona fide tensor. Due to the Bianchi identity, it 

also satisfies a covariant conservation law: 𝛁 ∙ 𝐆 ≡ 0. Furthermore, in contrast to GR (e.g. 

Wald, 1984, Ch. 3.2), NGEF admits of gravitational wave vacuum solutions for which the 

Einstein tensor doesn’t vanish.156 Such gravitational radiation would possess energy –as one 

would indeed expect. 

Yet, three reasons curb the proposal’s appeal: the unclear definition of total energy-stress, 

the violation of energy conditions, and its limit. 

The first problem arises from the fact that in NGEF (in contrast to GR) 𝐆 isn’t directly connected 

to the energy-stress tensor of matter; via its field equation (16), only their respective traces 

                                                           
154 A second problem with pseudotensors carries over from GR: There exists infinitely many pseudotensors, not 
all of them physically equivalent (ibid.).   
155 This proposal was suggested in the context of GR by Lorentz and Levi-Civita (see Pauli, 1981, fn. 350-351; 
Cattani & De Maria, 1993, esp. Ch. 5-13).  
156 Introduce the double null coordinates 𝑢 = 𝑟 − 𝑡 and 𝑣 = 𝑟 + 𝑡 for Minkowski spacetime in polar coordinates. 
Then, the line element for Minkowski spacetime takes the form (see e.g. Straumann, 2012, Ch. 4.8.1):  

𝑑𝑠2 = −𝑑𝑢𝑑𝑣 +
1

4
(𝑣 − 𝑢)2(𝑑𝜗2 + sin2 𝜑). 

For an arbitrary smooth function 𝑓(𝑢), we thus construct a family of exact vacuum solution for NGEF from the 
line-element 

𝑑𝑠2 = exp(𝑓(𝑢)) (2𝑑𝑢𝑑𝑣 + 𝑑𝑥2 + 𝑑𝑦2). 

This describes a plane gravitational wave in NGEF of generic amplitude, travelling in the z-direction. 
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are.  It’s therefore unclear how to define total (gravitational cum non-gravitational) energy-

stress. Even if one restricts oneself to only a linear combination, i.e. 𝐓(𝒕𝒐𝒕) ≔ 𝛼𝐆+ 𝐓 for some 

𝛼 ∈ ℝ, (say, in order to preserve the covariant conservation law, 𝛁
(𝒈)

∙ 𝐓(𝒕𝒐𝒕) = 𝟎), 𝛼 remains 

undetermined.  

A second problem stems from the lack of algebraic constraints on the trace-free Ricci tensor, 

𝑺 ≔ 𝐑𝐢𝐜 −
1

4
𝑅𝒈. Recall the decomposition of the Riemann tensor into three pieces, built from 

the Ricci scalar, the trace-free Ricci tensor and the Weyl tensor (see e.g. Wald, 1984, Ch. 3.2), 

respectively.  Via eq. (14), NGEF fixes the Weyl tensor. Via eq. 16, it algebraically relates the 

Ricci scalar and the trace of the matter energy-stress. But 𝑺 is left algebraically unconstrained. 

Via the Bianchi identity and eq. (16), it remains only differentially related to matter energy-

stress: 𝛁 ∙ 𝐒 = −6π 𝛁
(𝒈)

𝑇⨂𝒈.  

It’s therefore possible to make the gravitational energy-density 𝐆(𝝃, 𝝃) ≡ 𝐒(𝝃, 𝝃) −

6𝜋𝑇𝐠(𝝃, 𝝃), associated with a time-like observer 𝝃, violate all energy-conditions (see e.g. 

Malament, 2012, Ch.2.5 for more on energy conditions). Consider, for instance, electro-

vacuum, for which 𝑇 = 0. The gravitational energy-stress density for 𝝃 then simplifies to 

𝐆(𝝃, 𝝃) = 𝐒(𝝃, 𝝃). Here, 𝐒  can be an arbitrary, symmetric rank-2 tensor field satisfying 𝛁
(𝒈)

∙

𝐒 = 0. In particular, we can choose 𝐒 such that it violates the dominant energy condition. The 

latter states the causal flux of the gravitational energy-stress – a plausible desideratum for any 

physical energy-stress. This subverts the suitability of 𝐆(𝝃, 𝝃) as a physical energy-stress 

density. 

A final obstacle to interpreting the Einstein tensor as gravitational energy-stress is posed by 

its limit. For weak fields, we get in linear order in Ω2  for the vacuum case: 

2𝑅𝑎𝑏[𝛺²𝜂] ≈ 𝜕𝑎,𝑏𝛺
2 = 2𝜕𝑎𝛺𝜕𝑏𝛺 + 2𝛺𝜕𝑎,𝑏𝛺. ( 25 ) 

In this limit, we would expect a reasonable candidate for NGEF’s gravitational energy-stress to 

recover the Newtonian gravitational energy density. The preceding expression clearly doesn’t. 

In conclusion, NGEF‘s Einstein tensor is no viable candidate for NGEF’s gravitational energy. 

Neither was NGN’s canonical energy-stress for a naïve Lagrangian approach. Pseudotensors 

turned out to be viciously coordinate-dependent, gauge-quantities. Gravitational energy thus 

looks like a tenuous notion in NGEF.    
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In short, the second mystery of NG, (M2), is this:  whereas NGN admits of a standard energy-

stress associated with its scalar, in NGEF gravitational energy-stress ceases to be meaningful in 

any obvious sense. This predicament is disturbing: isn’t it an objective matter of fact −rather 

than dependant on the choice of two versions of a theory− whether gravity can be attributed 

energy or not? 

VI.3.3. Third Mystery: Energy conservation 

Interlocked with the status of gravitational energy is that of energy conservation. In NGN, total 

energy-stress appears to be conserved; in NGEF, only non-gravitational matter energy-stress 

does.    

In NGN, the continuity equation 𝛁 ∙ (𝚯 + 𝐓) = 0 holds (see §3.2). With 𝚯 being interpreted as 

gravitational energy-stress, it’s naturally construed as conservation of total energy: the sum 

of gravitational (𝚯) and non-gravitational (𝐓) energy-stress is locally (differentially) conserved. 

The density/flux of total energy-stress, 𝚯+ 𝐓, has neither sinks nor sources. 

Also globally (integrally), energy is conserved. Recall that Minkowski spacetime has ten Killing 

fields 𝜻 (defined via the metric’s vanishing Lie-drag along them, ℒ𝜻𝒈 = 0) – the generators of 

the inhomogeneous Poincaré group. Minkowski spacetime’s time-like Killing field 𝝃 − the 

generator of time-translations − underwrites a global conservation law (see e.g. 

Padmanabhan, 2010, Ch. 6.5) for the total energy-flux 𝑱[𝝃] ≔  (𝚯 + 𝐓) ∙ 𝝃 in the direction of  

𝝃, passing through the Cauchy hypersurface Σ (with the directed 3-volume element 𝑑𝚺): 

𝐸𝑡𝑜𝑡[𝝃] ≔ ∫ 𝑑𝜮 ∙ 𝑱
𝛴

. ( 26 ) 

Thanks to 𝝃‘s Killing property, the integral on the r.h.s. doesn’t depend on the choice of Σ. We 

may thus interpret 𝐸𝑡𝑜𝑡[𝝃] as the total energy-stress, stored in the time-slice Σ.  Also across 

time, it’s conserved. For a (3+1) foliation, {〈𝜎, Σ𝜎〉}, 𝐸𝑡𝑜𝑡 remains constant: 

𝑑

𝑑𝜎
∫ 𝑑𝜮 ∙ 𝑱
𝛴𝜎

= 𝟎. ( 27 ) 

NGN thus admits of both a satisfactory local and global energy conservation law. This result 

chimes with the predominant verdict in the extant literature (e.g. Giulini, 2008; Deruelle, 

2011; Deruelle & Sasaki, 2011; Gourgoulhon, 2012). It also meshes with the decisive role that 

energy conservation played for Einstein as a physical heuristic (Norton, 1993, 2005, 2018; 

Pitts, 2016a).  
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Again, in NGEF complications surge. In the preceding subsection, we already described one 

impediment: in NGEF, the concept of gravitational energy comes under assault. A kindred 

problem is this: NGN’s continuity equation for total energy-stress, is superseded in NGEF by 

𝛁
(𝒈)

∙ 𝑻 = 0. How to interpret it? Mirroring the situation in GR, one has three options: it 

codifies 1. energy transfer between gravity and matter, 2. generic energy non-conservation or 

3. conservation, respectively.  

Following Einstein in his 1916 review of GR (see Hoefer, 2000, p.191), some authors (e.g. 

Weinberg, 1972, p. 166; Brading & Brown, 2002, p. 17) view 𝛁
(𝒈)

∙ 𝑻 = 0 as expressing the 

energy exchange between matter and gravity. Several difficulties militate against this 

interpretation (Dürr, 2018a, §2.1). (The arguments carry over verbatim to NG.) I’ll not further 

pursue it here. 

Other authors (e.g. Padmanabhan, 2010, p. 213) espouse a weaker interpretation. According 

to them, it expresses the breakdown of (non-gravitational) matter energy conservation in 

generic, non-inertial reference frames. Contrariwise, in inertial frames, matter energy-stress 

is conserved: owing to the Equivalence Principle, in them, gravitational energy contributions 

are eliminated.  

A third group of authors (e.g. Eddington, 1923, Ch. 59; Dürr, 2018ab) further relax the 

interpretation of 𝛁
(𝒈)

∙ 𝑻 = 0: according to them, it expresses energy conservation of (non-

gravitational) matter alone. The apparent violation of energy conservation in non-inertial 

frames is discarded as an artefact of non-adapted, unphysical coordinates, comparable to the 

appearance of fictitious forces in classical mechanics.  

On either interpretation, the status of  𝛁
(𝒈)

∙ 𝑻 = 0 as conservation law in NGEF appears to be 

in tension with the total energy conservation law in NGN. In NGEF’s inertial frames (in which 

{
𝜆
𝜇𝜈
}
𝒈

= 0, cf., for instance, Knox, 2013, p. 349), only energy-stress of non-gravitational matter 

is conserved, 𝜕𝜈𝑇𝜇
𝜈 = 0.  

In short, NG’s third mystery, (M3) is this: total (gravitational cum non-gravitational) energy-

stress is conserved in NGN; in NGEF, by contrast, only energy-stress of non-gravitational matter 

alone is (at least in inertial frames).  
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(M3) is paradoxical, insofar as both the split between gravity and non-gravitational matter and 

the distinction between inertial and non-inertial frames plausibly reflect objective distinctions 

(i.e. grounded in facts, independent of the version of NG one adopts), rather than being 

merely conventional stipulations: given these assumptions, one would expect the 

conservation of total energy to be  a fundamental principle whose validity  doesn’t depend on 

whether one adopts Nordström’s or Einstein and Fokker’s version of NG. 

In conclusion: Depending on whether we consider NGN or NGEF we receive different answers 

to three foundational questions about objective matters of fact:  

(M1) Do particles in free-fall follow spacetime geodesics? In NGN, it appears, they 

don’t; in NGEF, it appears, they do.   

(M2) Is gravitational energy a robustly meaningful physical quantity? For NGN, one can 

affirm this; in NGEF, one is inclined to negate it. 

(M3) Is total energy conserved? For NGN, the answer seems yes; for NGEF, only non-

gravitational energy appears conserved. 

VI.4. Denouements  

This section will dispel the paradoxes that the Three Mysteries (M1)-(M3) present. To this end, 

I’ll scrutinise three of their central suppositions: realism about spacetime structure posited in 

NGEF and NGN; the correctness of their respective interpretations, and their empirical 

equivalence. I’ll first probe the denial of realism about spacetime (§4.1). I’ll then critically 

examine NGEF’s naïve spacetime interpretation (§4.2). Its refinement will enable us to fathom 

more judiciously the relation between NGEF and NGN (§4.3). In particular, I’ll advance an 

overarching Weyl-geometric spacetime interpretation of the formalism of both. This 

interpretation will help us to resolve the Three Mysteries (§4.4). 

VI.4.1. Conventionalism 

Here, I’ll inspect the simplest strategy to defang the paradoxes (M1)-(M3): to embrace 

conventionalism about geometry. 

The paradoxical effect of NG’s Three Mysteries is predicated on realism about NGN and NGEF: 

only if one considers spacetime a real physical entity, do the different answers that NGN and 

NGEF give to our questions genuinely conflict. 
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I’ll bracket generic anti-realism about scientific theories. More germane to the present context 

is a specific form of anti-realism: conventionalism about spacetime geometry, as endorsed by 

Poincaré, Reichenbach or Grünbaum (see e.g. Ben-Menahem, 2006 for a comprehensive 

review). On this view, spacetime structure is a conventional matter of descriptive expediency, 

rather than a matter of physical fact. For spacetime conventionalists, the mysteriousness of 

(M1)-(M3) evaporates: 

• Ad (M1): The GP explicitly refers to the spacetime’s geodesic structure. If the latter is 

merely conventional, the GP’s possible violation for different conventional choices 

becomes harmless: conventionalism demotes the GP to a convention-relative 

principle, devoid of absolute content. 

• Ad (M2): Energy-stress in general is always defined relative to some (priorly identified) 

spacetime structure (cf. Lehmkuhl, 2011; Dewar & Weatherall, 2018; Duerr & Read, 

2019). Formally this is manifest in the variational formulation, given in §4.2. (Note also 

that in order to define global (integral) notions of energy-stress −e.g. Noether charges, 

rather than Noether currents− one integrates local energy-stress over a volume 

element. Such a volume element again is a spatiotemporal (typically: metric) posit.) 

Hence, insofar as we deem spacetime structure conventional, we ought to deem 

energy-stress conventional, as well. 

• Ad (M3): The spacetime-relativity of energy mentioned before also impinges upon 

total energy-stress. Furthermore, the contemplated two interpretations of the 

vanishing covariant divergence of NGEF‘s energy-stress tensor made crucial reference 

to inertial frames. The conventionality of spacetime, and of particular inertial 

structure, would thus bleed into the conventionality of one’s account of total energy 

conservation. 

Conventionalism about geometry consequently cuts the Gordian knot. However, it has 

incurred incisive criticism (see e.g. Torretti, 1983, Ch. 7.2; Friedman, 1983; Ch. VII, McKie, 

1988; Nerlich, 1994; cf. however Pitts, 2016b). I’ll not jump into the fray. Instead, I’ll just 

assume that spacetime realism can be defended.157 My task then will be to show that NG’s 

                                                           
157 §4.2 will establish that from the perspective of Weyl geometry, NGN and NGEF pick out merely different gauges 
of the same Weyl geometric theory. We can then invoke covariance principles to sever the factual and 
conventional components of each (see e.g. Norton, 1994): the former are identified with what remains invariant 
under the theory’s symmetry transformations. What doesn’t remain invariant is identified as the conventional 
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Mysteries (M1)-(M3) pose no serious threat to spacetime realism158: rather, I’ll debunk them 

as artefacts of essentially misidentifying NGN’s true spacetime.159  

VI.4.2. NGEF revisited 

Here, I’ll revisit NGEF‘s spacetime interpretation. I’ll present an alternative formulation which 

cures the former’s blemishes. This will pave the way for our subsequent (§4.3) re-

considerations of the equivalence between NGN and NGEF. 

All is not well with NGEF. With reason, one may demur to four related features: the absence of 

a Lagrangian formulation160, the theory’s limitation to test matter, the unclear definition of 

the theory’s energy-stress tensor, and the apparently ad-hoc status of the conservation law 

(19).  

Without a Lagrangian formulation, the metric 𝒈’s coupling to matter other than test particles 

remains indeterminate: how does, say, a scalar field propagate on NGEF’s spacetime? This 

drastically curtails the theory’s scope. 

From a modern perspective it’s desirable to define the energy-stress tensor variationally as 

𝐓:= −
2

√|𝑔|

𝛿

𝛿𝒈
𝑆𝑚, with the matter action 𝑆𝑚 = ∫𝑑

4√|𝑔|𝐿𝑚. Absent a full Lagrangian picture, 

this avenue is obstructed. Unless the theory as whole − i.e. both its gravitational and non-

gravitational sector − is amenable to a Lagrangian formulation, the variational formulation of 

the energy-stress for test matter looks contrived.  

NGEF’s non-Lagrangian presentation also obscures the status of  𝛁
(𝒈)

∙ 𝑻 = 0: Is it an 

independent postulate or a theorem? In standard field theory, such conservation laws are 

                                                           
part of the theory’s representational surplus structure. (The latter is what I’ll refer to in the present context as 
gauge structure.) 
Within Riemannian geometry, though, this strategy doesn’t succeed in warding off conventionalism. Although 

NGN and NGEF share the light-cone structure, they differ over their geodesic structure: spacetimes with 𝛁
((1+𝜙)2𝜼)

 

and 𝛁
(𝜼)

 disagree over which time-like curves can be reparameterised as geodesics.       
158 Needless to say, this strategy won’t sway the conventionalist. She rejects the idea of super-empirical virtues 
as guides to truth. Any talk of truth, according to conventionalism is misguided: conventions, devoid of factual 
content, lack truth (see e.g. Ben-Menahem, 2006, Ch. 1&2).  
159 My strategy to bolster this claim closely follows Knox’s (2011).  
160 The absence of a satisfactory Lagrangian treatment is endemic to the historical material. Not even in his later 
work, did Einstein consistently adopt a thoroughgoing Lagrangian strategy for the matter sector (Pitts, 2016a). 
Plausibly, this is linked to his leeriness about the status of contemporaneous matter theories tout court (cf. 
Lehmkuhl, 2018).     
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usually derived within a Noetherian framework, i.e. follow from symmetries of the action. But 

again, here, such reasoning isn’t applicable in any obvious sense.    

Fortunately, those blemishes can be cured. I’ll now present a Lagrangian formulation of NGEF. 

Begin with NGEF’s KPMs. In §2.2, Weyl-flatness was imposed at the level of NGEF’s DPMs. Here, 

let’s incorporate it already at the level of the KPMs, instead. That is: NGEF’s KPMs, I stipulate, 

are now given by the quadruple 

〈ℳ, (1 + 𝜙)2𝜼, 𝜵
((1+𝜙)2𝜼)

, 𝜳〉. ( 28 ) 

Here, 1 + 𝜙 is a smooth, non-zero scalar. It represents NGEF’s gravitational degrees of 

freedom, ingrained in the metric’s conformal factor.161 All other denotations carry over from 

§2.2.  

This is both a kosher and meaningful move: KPMs delimit “[…] the range of metaphysical 

possibilities consistent with the theory’s basic ontological assumptions. The DPMs represent 

a narrower set of physical possibilities” (Pooley, 2013, p. 532). The proposed transition to 

modified KPMs thus merely recognises Weyl-flatness as metaphysically necessary162 within 

NGEF, whereas previously it was held only physically necessary.  

Now consider the total (gravitational cum matter) Einstein-Hilbert action for 𝒈 ≔ (1 + 𝜙)2𝜼 

and the standard matter Lagrangian 𝐿𝑚(𝑔,Ψ, ∂Ψ,… ): 163 

𝑆𝑡𝑜𝑡[𝒈,𝜳] = ∫𝑑
4√|𝑔| (

1

2𝜅
𝑅 + 𝐿𝑚(𝒈,𝜳, 𝜕𝜳,… )). ( 29 ) 

Remarkably164, its variation with respect to both 𝒈 and 𝚿 yields NGEF’s field equation (16), as 

well as the equations of motion for matter (Romero, Fonseca-Neto & Pucheu, 2012b, sect. 5, 

                                                           
161 A (pseudo-)Riemannian metric 𝑔𝑎𝑏  can be decomposed into two irreducible parts (see e.g. Stachel, 2011), the 

conformally invariant part 𝛾𝑎𝑏 = |𝑔|
−
1

4𝑔𝑎𝑏 (a rank-2 tensor density of weight -½), and the conformal factor 𝑉 ≔

|𝑔|
1

2 (a weight-1 scalar density):  𝑔𝑎𝑏 ≡ 𝑉
1

2𝛾𝑎𝑏 . The former defines the metric’s conformal/light-cone structure; 
the latter defines a volume element, which in turn gives a preferred affine parameter for the metric’s geodesics. 
162 This underlines the great importance that, to my mind, constraints a the level of KPMs have for physical 
theorising (see Curiel, 2016): in particular, they serve as preconditions for the well-definedness of the theory’s 
dynamics (equations of motion), and thereby the theory’s applicability.  
163 For technical details, in particular the incorporation of the boundary term, see Poisson (2004), Ch.4.1. 
164 From this (glaringly ahistorical!) vantage point, this formulation of NGEF is tantalisingly close to GR: solely 
NGEF’s a priori restriction to conformally flat spacetimes separates the two theories. Lifting this assumption, one 
recovers standard GR!  
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6)! (The crucial realisation is that 𝛿𝒈 = 2(1 + 𝜙)−1𝛿𝜙 𝒈. ). As before, they pick out NGEF’s 

DPMs. 

The energy-stress tensor that figures on the r.h.s. of the field eq. (16) can now be identified as 

the standard one, defined variationally: 𝐓:= −
2

√|𝑔|

𝛿

𝛿𝒈
∫𝑑4√|𝑔| ∫𝑑4√|𝑔| 𝐿𝑚. Its vanishing 

covariant derivative, 𝛁
(𝒈)

∙ 𝐓 = 𝟎 (which for test-matter coincides with the equations of 

motion, see e.g. Weatherall, 2018) follows from the general covariance of the matter action, 

and the form of the Lagrangian in the same manner as in GR (e.g. Hobson, Efstathiou & 

Lasenby, 2006, Ch. 19.12).  

As a spin-off, this Lagrangian formulation affords a natural extension of NGEF’s matter sector 

beyond its historical restriction to test particles: The familiar minimal coupling scheme can be 

applied to NGEF no worse than to GR (see e.g. Carroll, 2004, pp, 152, pp. 179).   

In conclusion: Applying Hamilton’s Principle to the full Einstein-Hilbert action, with the metric 

constrained to be conformally flat ab initio, yields NGEF’s dynamics. This formulation allows 

the standard definition of NGEF’s matter energy-stress tensor. Furthermore, it allows NGEF’s 

natural extension to arbitrary types of (non-quantum) matter. The conservation law now holds 

as a theorem.   

On the basis of this re-formulation of NGEF, we’ll next revisit the equivalence between NGEF 

and NGN.  

VI.4.3. The Equivalence of NGEF and NGN  

This subsection seeks a more circumspect exposition of the nature of the relation between 

NGN and NGEF. Let’s first (§4.3.1) look into possible challenges for both their theoretical and 

even empirical equivalence. In §4.3.2, we’ll see that for conformal matter both theories can 

be identified as representational variants of the same theory. Their theoretical equivalence 

can be extended to generic matter from the (anachronistc) perspective of Weyl geometry, i.e. 

by embedding them into a Weyl-geometric “super-theory” (§4.3.3).           

VI.4.3.1 Challenges for equivalence 

Suppose a spacetime realist (in the sense of §4.1) subscribes to the respective interpretations 

of NGEF and NGN. By impugning their equivalence, she can still shrug off NG’s Three Mysteries: 
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notwithstanding some structural and empirical overlap, NGEF and NGN aren’t merely 

representational variants of each other. It then oughtn’t faze us, if they disagree on the status 

and validity of fundamental concepts and principles: they are distinct theories.   

Two reasons seem to buttress such a stance: scepticism about the empirical equivalence 

between NGEF and NGN, and doubts about (or even accounts that dispute) their theoretical 

equivalence, i.e. theory identity.   

First, NG’s historical limitation of the matter sector to test particles leaves open the possibility 

that other forms of matter break the empirical equivalence between NGEF and NGN. With 

empirical equivalence being a necessary criterion for theory equivalence, NGEF and NGN’s 

theoretical inequivalence follows trivially.  

Secondly, let’s concede that NGEF and NGN share some mathematical similarities. Let’s even 

grant their (permanent/non-transient) empirical equivalence. Yet, one may wish to resist their 

identification on two grounds. One is that such an identification crucially hinge on details that 

the discussion so-far has elided: how exactly are NGN and NGEF structurally related? Is, for 

instance, the mapping between NGEF‘s and NGN ‘s DPMs one-to-one or one-to-many? A 

second reason for not identifying NGEF and NGN may be caution: absent any consensus on 

sufficient criteria for theory individuation/equivalence (see e.g. Weatherall, 2019 for a recent 

review), it may be prudent to refrain from a judgement of equivalence in the case at hand. 

I’ll now address the first concern. To that end, I’ll next lay bare NGN and NGEF’s structural 

relationship in a manner that guarantees their empirical equivalence. This clarification will 

enable a more nuanced assessment of reasons to also theoretically identify them. I’ll flesh out 

their structural equivalence (i.e. the mathematical equivalence of their dynamics– omitting 

pro tempore questions of interpretative equivalence) in two ways. The first centres on the 

inter-translatability of NGN and NGEF’s constitutive equations via so-called conformal re-

descriptions. The second approach subsumes NGN and NGEF under an overarching theory: the 

two theories then come out as equivalent descriptions in terms of two gauges of the same 

Weyl geometric theory.     

VI.4.3.2 The perspective from conformal frames 
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The perspective from conformal frames is adumbrated in Einstein and Fokker’s paper, 

rehashed in §2.2. NGN’s and NGEF’s dynamics are re-descriptions of each other through a 

change of units of length and time.   

To elaborate, recall NGEF’s field equation  

𝑅[𝒈] = −24𝜋𝑇[𝒈,𝜳]. ( 30 ) 

Thanks to the metric’s conformal flatness, the l.h.s. simplifies to an expression for the metric’s 

non-absolute/dynamical degree of freedom, i.e. its conformal factor 1 + 𝜙 = √|𝑔|/|𝜂|
8

:  

𝑅[(1 + 𝜙)2𝜼] = −6(1 + 𝜙)−3□𝜙. ( 31 ) 

Let’s next evaluate the r.h.s. of eq. (31) in terms of its so-called conformal transform (see e.g. 

Wald, 1984, Appendix D; Dabrowski, Garecki & Blaschke, 2009 for details). By that the 

following is meant.  

Consider the (non-gravitational) physics unfolding on the generic spacetime 〈ℳ, 𝒈, 𝛁
(𝒈) 〉. 

Without altering the physical phenomena, re-scale −i.e. stretch and shrink− all distances 

(whilst preserving all angles). The resulting spacetime then is 〈ℳ, �̅�, 𝛁
(�̅�) 〉, where �̅� = Ω2𝒈 

for a non-vanishing smooth Ω:ℳ → ℝ≠0. Such re-scalings are called conformal 

transformations.  Under them, the laws of physics describing the (unaltered) phenomena take 

of course a different form: one only distorts length and time units. The modified re-description 

is called a representation in a different conformal frame.   

Under conformal transformations, 𝒈 → �̅� = Ω2𝒈, energy-stress tensors for classically 

considered matter − electromagnetism and perfect fluids with pressure (upon suitable 

redefinitions of pressure and density, which we may set aside here) − transform as 𝑻[𝒈,Ψ] →

�̅�[�̅�,𝚿] = Ω−2𝑻[𝒈,𝚿] (see e.g. Capozziello & Faraoni, 2011, Ch. 2). Consequently,  

�̅� = 𝑡𝑟�̅�{�̅�} = 𝛺
−4𝑇. ( 32 ) 

Now think of NGEF’s metric 𝒈 as the conformal transform of 𝜼 with the conformal factor Ω =

1 + 𝜙. Using eq. (32), we can thus express the r.h.s. of eq. (32) as  

𝑇 = (1 + 𝜙)−4�̂�, ( 33 ) 

where �̂�[𝜂, Ψ] is the conformal transform of the trace of the energy-stress tensor 𝑇[𝒈,Ψ].  

Combing both expressions (33) and (31), we obtain from for NGEF’s field equation: 
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□𝜙 = −4𝜋(1 + 𝜙)−1�̂�. ( 34 ) 

This is, of course, the field equation (2) for NGN’s scalar.  

By the same token, under conformal transformations, the vanishing covariant divergence of 

the energy-stress, 𝛁
(𝒈)

∙ 𝑻 = 𝟎, becomes: 

𝜵
(�̅�)

∙ �̅� = −�̅� 𝜵
(�̅�)

𝑙𝑛 𝛺 ( 35 ) 

Choosing again a conformal frame in which NGEF’s metric is Minkowskian, �̅� = 𝜼 (with the 

Levi-Civita connection 𝛁), we get:  

𝜵 ∙ �̂� = −�̂�𝜵 𝑙𝑛(1 + 𝜙). ( 36 ) 

With eq. (34), this is equivalent to 

𝜵 ∙ (�̂� + 𝜣) = 𝟎, ( 37 ) 

with 𝚯 = −
1

8𝜋
(𝛁ϕ⨂𝛁ϕ−

1

2
(𝛁ϕ)2𝜼), as in §2.1. This is, of course, NGN’s conservation law. 

In conclusion: We can identify NGN‘s field equation and conservation law as those of NGEF, if 

the matter sector is represented in a conformal frame in which �̅� = 𝜼. (The same holds 

mutatis mutandis for NGEF‘s field equation and conservation law and those of NGN.)  

Via this structural equivalence, we can extend NGN to electromagnetism and perfect fluids 

(with pressure), deploying the natural extension of NGEF (§4.2). With NGN and NGEF thus being 

merely conformal re-descriptions of the classical matter sector, they share the same empirical 

content.     

Essential to the argument is the identity (33) between the energy-stress and its conformal 

transform. Unfortunately, for matter other than Maxwellian electromagnetism or perfect 

fluids it no longer holds: already a scalar field (e.g. Deruelle & Sasaki, 2011, Appendix) would 

thus beak the empirical equivalence between NGN and NGEF.165 

                                                           
165 One might be tempted to dismiss matter other than Maxwellian electrodynamics and perfect fluids as 
unclassical, and hence extraneous to the analysis of a classical field theory. This objection strikes me as ad-hoc: 
For the empirical inequivalence of two theories it’s irrelevant, whether the matter that breaks the equivalence 
is classical or not. Furthermore, suppose one were to preclude non-classical, quantum matter from one’s 
considerations. Even so, for the classical (non-quantised) electromagnetic field with a mass term (cf. Pitts, 2011), 
the conformal identities no longer hold. Massive electromagnetism, too, would thus break the empirical 
equivalence between NGEF and NGN. 
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How to extend their empirical equivalence beyond Maxwellian electromagnetism and perfect 

fluids? For that, we need to transition to Weyl geometry (see e.g. Eddington, 1923, Ch. VII; 

Scholz, 2017, 2018; Wheeler, 2018).  

VI.4.3.2 The perspective from Weyl geometry 

Weyl geometry generalises Riemannian geometry by allowing for a connection other than the 

Levi-Civita connection, induced by the metric. It relaxes the postulate of metric compatibility 

in favour of the non-metricity condition 

𝜵 ⋅ 𝒈 = 𝝈⊗ 𝒈. ( 38 ) 

Here, 𝝈 ∈ 𝑇∗ℳ is a 1-form on the manifold ℳ. Henceforth, we’ll assume that the connection 

𝛁 has no torsion. (That is: Two vectors parallel-transported along one another form a 

parallelogram.)  For given 𝒈 and 𝝈, the non-metricity condition then uniquely determines 𝛁. 

A Weyl geometry is fully characterised by the triplet 〈ℳ, 𝒈, 𝝈〉. (However, such a triplet still 

contains redundancy. We’ll see shortly that a Weyl geometry is more perspicuously 

characterised as an equivalence class of such triplets.)  

Metric incompatibility portends a dramatic departure from Riemannian geometry: parallel 

transport (defined via 𝛁) alters vectors. Consider the smooth curve 𝐶 = 𝐶(𝜆) in ℳ, and two 

vectors 𝑈 and 𝑉 along 𝐶. Then, parallel-transporting them along 𝐶  from 𝑃0 = 𝐶(𝜆0) ∈ ℳ to 

some arbitrary other point 𝑃 = 𝐶(𝜆) ∈ ℳ, changes their inner product: 

𝑔(𝑈(𝜆), 𝑉(𝜆)) = 𝑔(𝑈(𝜆0), 𝑉(𝜆0)) 𝑒𝑥𝑝 (∫ 𝜎 (
𝑑

𝑑𝜉
)

𝜆

𝜆0
𝑑𝜉), ( 39 ) 

with 
𝑑

𝑑𝜉
 denoting the vector tangent to 𝐶. In consequence, a vector’s length becomes path-

dependent: for a closed curve 𝐶, the magnifying factor exp (∮𝜎 (
𝑑

𝑑𝜉
)𝑑𝜉) ≠ 1 picks up 

information about the path. Being correlated with the length of their worldlines, clocks thus 

depend on their history. In particular, spectral lines transmitted via light that passes through 

a region of generic 𝝈 cease to be sharp. This so-called “second-clock effect” doomed Weyl’s 

unification of electromagnetism and gravity, based on Weyl geometry (see e.g. Pais, 1982. Ch. 

17 (d)) .166   

                                                           
166 Weyl (1918, 1919) identified 𝝈 with the electromagnetic 4-potential 𝑨. Interestingly, Weyl’s original 
motivation was a unified field theory; instead, he sought to “do justice mathematical justice” (Afriat) to lengths 
and directions by a purely infinitesimal geometry (Ryckman, 2005, Ch. 6; Afriat, 2009). 
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The second-clock effect can be eschewed, however (e.g. Lobo & Romero, 2018; Romero, Lima 

& Sanomiya, 2019): if 𝝈 is exact (i.e. of the form 𝝈 = 𝛁𝜑 for some scalar 𝜑), Stokes’ theorem 

ensures  

∮𝜎 (
𝑑

𝑑𝜉
) 𝑑𝜉 = 0. ( 40 ) 

The magnifying factor in (39) is thus path-independent. In the following we’ll restrict our 

considerations to such cases.  

But triplets 〈ℳ,𝒈, 𝝈〉 with exact 𝝈 retain another effect peculiar of Weylian geometries. The 

length 𝐿(𝜆) of a vector at 𝑃 = 𝐶(𝜆) changes, when parallel-transported along a (non-closed) 

curve 𝐶. For a coordinate basis {𝑥𝑎}, eq. (39) implies  

𝑑

𝑑𝜆
𝐿 =

𝜎𝑎

2

𝑑𝑥𝑎

𝑑𝜆
𝐿. ( 41 ) 

The characterisation of Weyl geometry so far, via triplets 〈ℳ,𝒈, 𝝈〉, contains redundancy. To 

pare down this surplus structure, notice that the non-metricity condition (38) is invariant 

under the following simultaneous (“Weyl”) transformations: 

{
𝒈
𝝈
→ {

�̃�: = 𝑒𝑓𝒈
�̃�:= 𝝈 + 𝜵𝑓 = 𝜵(𝜑 + 𝑓)

, ( 42 ) 

for an arbitrary scalar 𝑓:ℳ → ℝ .  

Weyl transformations thus induce an equivalence relation ~ between triplets: 

〈ℳ,𝒈, 𝝈〉~〈ℳ, �̃�, �̃�〉, if and only if they are related via Weyl transformations. The relation ~ 

then defines the equivalence class of triplets [〈ℳ,𝒈, 𝝈〉] ≔

{〈ℳ, �̃�, �̃�〉: 〈ℳ,𝒈, 𝝈〉~〈ℳ, �̃�, �̃�〉}. Such an equivalence class of triplets is called an integrable 

Weyl geometry. (The qualifier signifies the non-metricity vector is exact. For readability, I’ll 

suppress it: the Weyl geometries considered here will all be integrable.)  Different choices for 

the metric and non-metricity field as representatives of the equivalence class are different 

mathematical representations of the same Weyl geometry. In other words, Weyl 

transformations (42) are gauge transformations of the Weyl geometric facts: any pair of 

triplets 〈ℳ,𝒈, 𝝈〉 and 〈ℳ, �̃�, �̃�〉, related via Weyl transformations represent the same Weyl 

geometry: [〈ℳ, 𝒈, 𝝈〉] = [〈ℳ, �̃�, �̃�〉]. 

What are the salient, invariant structures of a Weyl geometry? It’s fully characterised by its 

geodesic structure, a distinguished metric structure (Romero, Fonseca-Neto & Pucheu, 2012a, 
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§2). The former follows from the observation that Weyl transformations leave the connection 

coefficients invariant: 

𝛤𝑏𝑐
𝑎 = {

𝑎
𝑏𝑐
}
𝑔
−
1

2
𝑔𝑎𝑑(𝑔𝑑𝑏𝜎𝑐 + 𝑔𝑑𝑐𝜎𝑏 − 𝑔𝑏𝑐𝜎𝑑) → �̃�𝑏𝑐

𝑎 = 𝛤𝑏𝑐
𝑎 . ( 43 ) 

For the privileged metric structure, realise first that through a suitable Weyl transformation 

of a triplet 〈ℳ,𝒈, 𝝈〉, one can always restore metric compatibility. Consider what I’ll 

henceforth refer to as the “effective metric” �̂� ≔ �̂�[𝒈, 𝜎] ≔ exp(−∫𝜎)𝒈 = e−𝜑𝒈. The non-

metricity condition (38) is equivalent to the (Riemannian) metricity condition for it: 

𝜵 ∙ �̂� = 𝟎. ( 44 ) 

�̂�[𝒈, 𝜎] doesn’t depend on the representative [𝑔, 𝜎] of its associated equivalence class. (This 

justifies the above representation-independent notation �̂�). �̂� therefore invariant under Weyl 

transformations: 

�̂� → �̂�. ( 45 ) 

�̂� thus defines a privileged metric structure, preserved under Weyl transformations. As a 

corollary, all geometric quantities constructed from �̂� are likewise invariant. It turns out that 

its Levi-Civita connection coincides with connection in the original non-metricity condition, 

Γ̂𝑏𝑐
𝑎 : = {

𝑎
𝑏𝑐
}
�̂�
= Γ𝑏𝑐

𝑎 .167 

In consequence, an integrable Weyl geometry [〈ℳ, 𝒈, 𝝈〉] uniquely determines, and is 

uniquely determined by a privileged metric structure �̂�. It yields a particularly natural 

representative of the Weyl geometry – the so-called Riemann gauge:168  

                                                           
167 Another fundamental invariant of Weyl geometry is what Weyl dubbed length curvature 
(“Streckenkrümmung”): 𝑭 ≔ 𝑑𝝈 = 2𝜕[𝑎𝜎𝑏]𝑑𝑥

𝑎 ∧ 𝑑𝑥𝑏 . Whereas Riemann curvature is responsible for changes 

in the direction of parallel-transported vectors (hence dubbed ”direction curvature” (“Richtungskrümmung”) by 
Weyl), length curvature regulates their length. For exact 𝝈, the length curvature vanishes: 𝑭 ≡ 𝟎. This reflects 
the above-mentoined fact that integrable Weyl geometries escape the Second Clock Effect. 
168 Notice that �̂� thus plays a double role. First and foremost, the “effective metric” �̂�𝑎𝑏  denotes a gauge-invariant 
object: conceived of as functional �̂�𝑎𝑏[𝑔, 𝜎], it’s independent of any representative of the Weyl geometry’s 
equivalence class, 〈𝒈, 𝝈〉 ∈ [〈𝒈, 𝝈〉]. (This is analogous to the electromagnetic Faraday tensor 𝐹𝑎𝑏[𝐴]: = 2𝜕[𝑎𝐴𝑏]: 

it, too, is independent of the representative of the equivalence class of electromagnetic 4-potentials, related via 
gauge transformations  (i.e. that differ by an exact 1-form).)   
The (gauge-variant) gauge-metric of a Weyl geometry (i.e. the representative of the latter’s equivalence class) 
can be made – by going to the Riemann gauge – to coincide with it. But this doesn’t mean, of course, that the 
Riemann gauge metric should be identified with �̂�𝑎𝑏. The Riemann gauge metric and �̂�𝑎𝑏  are distinct objects: the 
latter is an invariant metric, defined on the integrable Weyl Geometry, the latter is a representative of the 
equivalence class [〈𝒈, 𝟎〉] defining that Weyl Geometry .  
I thank Dennis Lehmkuhl (Bonn) for pressing me on this. 
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[〈ℳ,𝒈, 𝝈〉] = [〈ℳ, �̂�, 𝟎〉]. ( 46 ) 

What is the connection between Weyl geometry and NG? The field equations of NGN and NGEF 

pick out different gauges (representatives) of the same Weyl geometry (Romero, Fonseca-

Neto, 2012b, §5, 6). I’ll now expand on this claim. 

In §2.2, we portrayed NGEF as theory about the conformally flat spacetime 〈ℳ, 𝒈, 𝛁
(𝒈) 〉. By 

construction, the latter exemplifies a Riemannian geometry: 𝛁
(𝒈)

∙ 𝒈 = 𝟎. Let’s therefore 

stipulate that NGEF‘s field equations determine the Riemann gauge 〈ℳ, �̂�, 0〉 of the Weyl 

geometry [〈ℳ, �̂�, 0〉], with the invariant effective metric �̂� = 𝒈 = (1 + 𝜙)2𝜼. The 

corresponding gauge in which the metric is Minkowskian can then be gleaned from (42) as 

〈ℳ, 𝜼, 2𝛁 ln(1 + 𝜙)〉. That is:  

[〈ℳ, (1 + 𝜙)2𝜼, 0〉] = [〈ℳ, 𝜼, 2𝜵 𝑙𝑛(1 + 𝜙)〉]. ( 47 ) 

NGEF’s dynamics picks out the metric and Levi-Civita connection of the Riemann gauge. As they 

are invariants of the Weyl geometry [〈ℳ, �̂�, 0〉], both sides of NGEF‘s field equations (14) &(16) 

remain invariant under Weyl transformations.  

NGN’s dynamics picks out the scalar 1 + 𝜙 of the non-metricity field in the gauge 

〈ℳ, 𝜼, 2𝛁 ln(1 + 𝜙)〉. To procure NGN’s field equations, we merely have to express NGEF’s 

field equations in terms of 𝜼 and its Levi-Civita connection 𝛁 = 𝛁
(𝜼)

.  

To that end, observe first that since NGEF’s metric 𝒈 is assumed to coincide with the invariant 

�̂�, NGEF’s matter action is invariant under Weyl transformations (42): 

𝑆𝑚[𝒈,𝜳] = ∫𝑑
4𝑥√|�̂�| 𝐿𝑚(�̂�,𝜳) → 𝑆𝑚[�̃�,𝜳] = 𝑆𝑚[𝒈,𝜳]. ( 48 ) 

The energy-stress tensor with respect to the Riemann gauge metric, i.e. 𝑻 ≡

−
2

√|𝑔|

𝛿

𝛿𝒈
𝑆𝑚[𝑔, Ψ], can therefore be expressed in terms of the energy-stress with respect to 

the non-Riemann gauge metric �̃� as: 

�̃� ≡ −
2

√|�̃�|

𝛿

𝛿�̃�
𝑆𝑚[�̃�,𝜳] = 𝑒

𝑓𝑻. ( 49 ) 

So, with 𝑓 = 2 ln(1 + 𝜙) the link between NGN’s energy-stress tensor �̃� (defined with respect 

to 𝜼) and NGEF’s energy stress-tensor (defined with respect to 𝒈) is: 

�̃� = (1 + 𝜙)2𝑻. ( 50 ) 
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For the respective traces, it follows that 

�̃� ≔ 𝑡𝑟𝜼{�̃�} = (1 + 𝜙)
4𝑇 ( 51 ) 

With this identity, we have recovered NGN’s field equations (2): 

□𝜙 = 4𝜋(1 + 𝜙)−1�̃�. ( 52 ) 

By the same token, for NGN’s conservation law, we merely need to rewrite the vanishing 

covariant derivative of the energy-stress tensor in the Riemann gauge 〈ℳ, �̂�, 𝟎〉   

𝟎 = 𝜵
(�̂�)

∙ 𝑻 = 𝜵
(�̂�)

∙ (𝑒−𝑓�̃�) ( 53 ) 

in terms of the Levi-Civita connection of the metric 𝒈 in the gauge 〈ℳ, 𝒈, 𝝈〉. This is 

accomplished via the following relation between the connection (with the components Γ̂𝑏𝑐
𝑎 ) 

and the Levi-Civita connection 𝛁
(𝒈)

 (with the components {
𝑎
𝑏𝑐
}
𝑔

) for any gauge of a Weyl 

geometry [〈ℳ, �̂�, 0〉] : 

�̂�𝑏𝑐
𝑎 = {

𝑎
𝑏𝑐
}
𝑔
−
1

2
𝑔𝑎𝑑(𝑔𝑑𝑏𝜎𝑐 + 𝑔𝑑𝑐𝜎𝑏 − 𝑔𝑏𝑐𝜎𝑑). ( 54 ) 

For the gauge 〈ℳ, 𝜼, 2𝛁 ln(1 + 𝜙)〉, we obtain: 

𝜵 ∙ �̃� = −�̃�𝜵 𝑙𝑛(1 + 𝜙). ( 55 ) 

with 𝛁 = 𝛁
(𝜼)

. 

Together with NGN’s already recovered field equation, this eventually leads to the 

conservation law 𝛁(𝑻 + 𝚯) = 𝟎. 

The Weyl geometric perspective affords an elegant understanding of the direct and universal 

coupling of NGN’s scalar 𝜙 to the test matter variables in §2.1. Above we argued that NGN’s 

field equation and conservation law determine the gauge  〈ℳ, 𝜼, 2𝛁 ln(1 + 𝜙)〉 of the 

integrable Weyl geometry [〈ℳ, (1 + 𝜙)2𝜼, 0〉].  

In this gauge, the non-metricity condition (38) takes the form: 

𝜵 ∙
(�̂�)

𝜼 = 2𝜵 𝑙𝑛(1 + 𝜙)⨂𝜼. ( 56 ) 

As a result, the length 𝐿 of a parallel transported vector changes according to (41): 

𝑑𝐿

𝑑𝜆
=
𝜕𝑎𝜙

1+𝜙

𝑑𝑥𝑎

𝑑𝜆
𝐿. ( 57 ) 

The length of a test-particle’s worldline is therefore given by  
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∫(|𝜼(𝑑𝑠, 𝑑𝑠)|
𝟏

𝟐𝑒𝑥𝑝(2∫𝑑 𝑙𝑛(1 + 𝜙))) =∫|(1 + 𝜙)2𝜼(𝑑𝑠, 𝑑𝑠)|
𝟏

𝟐.

 (58) 

The natural lengths figuring in the laws of physics hence are induced by the effective metric 

(1 + 𝜙)2𝜼.  

This discrepancy between NGN’s Minkowskian metric structure and the “naturally measured 

distances” (and durations) reveals the geometry’s (integrable) Weylian (rather than 

Riemannian) nature: it’s a manifestation of the non-trivial non-metricity field 𝝈 =

2𝛁ln(1 + 𝜙) in the gauge 〈ℳ, 𝜼, 2𝛁 ln(1 + 𝜙)〉. 

In conclusion: The dynamical equations of NGN and NGEF select two different gauges 

(representatives) of the same Weyl geometry [〈ℳ, (1 + 𝜙)2𝜼, 0〉]. They correspond to the 

Riemann gauge and a non-Riemannian gauge, respectively. Thus construed, NGN and NGEF are 

empirically equivalent for all types of matter.  

The preceding Weyl-geometric framework illuminates the empirical equivalence between 

NGN and NGEF, as well as the mathematical equivalence between their constitutive equations. 

We are now able to ascertain their theoretical equivalence: should we identify NGN and NGEF 

as different representations of the same theory?  

VI.4.3.3 The case for theoretical equivalence  

I’ll now substantiate the claim that NGN and NGEF are indeed theoretically equivalent. The 

argument proceeds in three steps. First, I’ll animadvert upon NGN’s field interpretation. I’ll 

then show that NGEF’s (refined) spacetime interpretation, applied to NGN’s formalism, evades 

the flaws of NGN’s field interpretation. I conclude with pleading for identifying NGN and NGEF 

as the same theory.   

Return to NGN‘s field interpretation of (§2.1): NGN is a special-relativistic theory about a 

gravitational scalar. Three shortcomings of this interpretation stand out: an intransparent 

coupling scheme, its deployment of universal forces and its gauge degrees of freedom. 

The first complaint about NGN, if taken as a theory in its own right (i.e. one that isn’t derivative 

of NGEF), excoriates its scalar’s universal, direct coupling. Such a feature is familiar from Brans-

Dicke theories in the so-called Einstein Frame (see e.g. Faraoni & Capozziello, 2011, Ch. 3). 

There, however, one may well dismiss the universal, direct coupling as an artefact of the 
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mathematical representation: instead, the real metric is the one to which matter couples 

effectively - the one whose Levi-Civita connection determines the geodesics of test-particles 

in free fall (cf. Weinstein, 1996). Arguably more baneful is the artificiality of NGN’s coupling. 

For point-particles, one may still stomach the scalar’s coupling to the matter variables in the 

matter action (recall §2.1) as a brute fact: 

𝑆𝑚 = ∑ 𝑚𝜈𝜈 ∫𝜙 𝑑𝜏𝜈 . ( 59 ) 

It then comes as a surprise that the gravitational scalar doesn’t couple to the electromagnetic 

field. Extending NGN beyond its historical matter sector (§4.3), one can scarcely gainsay the 

ad-hoc appearance of the coupling. Consider, for instance, a scalar field 𝜑 in a potential 𝑉(𝜑). 

The matter Lagrangian depends quartically on the scalar (cf. Deruelle & Sasaki, 2011): 

𝑆𝑚 ∝ ∫𝑑
4𝑥√|𝜂| (

1

2
(1 + 𝜙)2(𝛻𝜑)2 + (1 + 𝜙)4𝑉(𝜑)).

 (60) 

Such an apparently cobbled-together coupling detracts from NGN’s coherence.  

Related to the scalar’s universal coupling is a second oddity: NGN exhibits a “universal force” 

in the sense of Reichenbach (1957, esp. Ch. I.3 and I.5; cf. Carnap, 1966, pp. 169). That is: 

When transported to a region where the scalar changes by  Δ𝜙, equilibrated matter 

configurations serving as rods of length 𝐿 suffer the same distortions ∆𝐿, irrespective of their 

composition:  

𝛥𝐿

𝐿
=

𝛥𝜙

1+𝜙
. ( 61 ) 

This “universal effect” (Carnap) of NGN’s scalar can’t be screened off. 

In particular, the (suitably reparameterised) curves 𝛾:ℝ ⊃ 𝐼 → ℳ of test particles in free-fall 

deviate from geodesics, irrespective of their mass: 

𝜵�̇��̇� = 𝜵 𝑙𝑛(1 + 𝜙). ( 62 ) 

NGN’s scalar mediates the universal acceleration responsible for this deflection. 

In consequence, NGN’s Minkowskian inertial structure remains invariably hidden (cf. Renn & 

Schemmel, 2012, Appendix; Pitts, 2018) – at least, as long as one limits oneself to test matter. 

In particular, ideal rods and clocks survey the effective metric (1 + 𝜙)2𝜼 – not just 𝜼: naturally 

measured length and time units don’t coincide with those determined via the Minkowski 

metric.  
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Such universal effects and forces are notoriously suspect. Following Reichenbach (cf. also 

Dieks, 1987; Nerlich, 1994 Ch. 7.6), whenever we encounter them in a theory, we ought to 

reformulate it, such that in the new formulation all universal effects and forces are set to zero. 

(I merely regard this as a – defeasible! – methodological maxim. I don’t see anything apriori 

physically absurd or metaphysically incoherent in the idea of universal forces.) Norton (1994, 

p. 165) likens them to "[…] the fairies at the bottom of my garden. We can never see these 

fairies when we look for them because they always hide on the other side of the tree. I do not 

take them seriously exactly because their properties so conveniently conspire to make the 

fairies undetectable in principle."     

Genuine forces are causes: they explain why a certain event (or default behaviour) occurs – 

rather than another (cf. Maudlin, 2007, Ch. 5). Universal forces don’t allow for such contrast 

classes: as they can’t be switched off, one is unable to evaluate the relevant counterfactuals.  

The third, and most devastating objection to NGN reprimands its interpretatively unaccounted 

for gauge degrees of freedom. NGN’s dynamical symmetry group – the group of 

transformations that preserve its dynamical equations – is larger than the Poincaré group. 

One can straightforwardly verify that in addition to the Poincaré transformations, it contains 

dilatations with simultaneous field re-definitions 

{
𝑥𝑎

1 + 𝜙
→ {

𝑥′𝑎 = 𝜆𝑥𝑎

1 + 𝜙′ = 𝜆−1(1 + 𝜙′)
, ( 63 ) 

for some parameter 𝜆 ∈ ℝ≠0, as well as so-called special conformal transformations 𝑥𝑎 →

𝑥′𝑎 = 2𝛽𝑏𝑥
𝑏𝑥𝑎 − 𝑥²𝑥𝑎 (for non-null 𝜷) with more complicated simultaneous field re-

definitions. Together, the three groups form a 15-dimensional group – the so-called 

“Bateman-Cunningham Conformal Group” (Pitts, 2016b).   

NGN’s symmetry under those transformations differs in no obvious way from the freedom to 

add a total differential 𝛁Λ to the electromagnetic 4-potentials 𝑨 → 𝑨 + 𝛁Λ: they don’t seem 

to alter the physical facts. In other words, they are plausibly gauge transformations169: two 

                                                           
169 This follows what Norton (2019, sect. 10.3) calls a “convenient template when […] to decide if something is a 
gauge freedom or not“: transformations under the Bateman-Cunningham Conformal Group don’t result in any 
observable effects; nor are NGN’s laws able to distinguish between models, related by them. 
The case for gauge equivalence can be spelt out more formally (in complete analogy to Newton-Cartan Theory), 
for instance, along the lines of Weatherall’s (2016, 2016b, 2019, 2020) proposal for gauge equivalence in terms 
of categorical equivalence.  
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DPMs of NGN  〈ℳ, η𝜇𝜈 , {
κ
𝜇𝜈}

𝜂
, ϕ,Ψ𝜈1…

𝜇1…〉 and 〈ℳ, η𝜇′𝜈 , {
κ′
𝜇′𝜈′

}
𝜂

, ϕ′,Ψ𝜈′1…
𝜇′1…〉, with the respective 

coordinatisations {𝑥𝜇} and {𝑥𝜇′}, represent the same world, if the two models are related via 

Poincaré transformations, dilatations or special conformal transformations and their 

respective simultaneous field redefinitions. 

Vis-á-vis those gauge degrees of freedom, one may repudiate NGN along two lines. One is to 

demand a symmetry-free interpretation of NGN: what is the gauge-invariant reality NGN 

purports to limn? In particular, what is the status of NGN’s scalar? A second line of criticism 

targets NGN’s spacetime setting more specifically. NGN’s dynamical symmetries -15 degrees 

of freedom- and the symmetries of Minkowski spacetime – 10 degrees of freedom- don’t 

match. Neither the dilatations nor the special conformal transformations (together with their 

respective scalar redefinitions) are symmetries of Minkowski spacetime. NGN consequently 

breach Earman’s (1989, Ch. 3.4) first adequacy condition for spacetime settings: every 

dynamical symmetry should be a spacetime symmetry. “The theory that fails [this principle, 

P.D.] is thus using more spacetime-structure than is needed to support the laws, and slicing 

away this superfluous structure serves to restore [this principle]” (Earman, 1989, pp. 46).170 

The identification of NGN’s spacetime as Minkowski thus seems spurious. . 

In conclusion, NGN’s field interpretation is multiply defective. Can we do better? I affirm this 

in the next step: the (refined) spacetime interpretation, originally proposed for NGEF, delivers 

a more satisfactory interpretation of NGN’s formalism, as well.   

In §4.3.2, NGN’s formalism was shown to pick out the Weyl geometry described by NGEF as its 

Riemann gauge. A formalism per se is interpretatively neutral. So, let’s stipulate NGN and 

NGEF‘s interpretative equivalence:171 NGN too describes the Weyl geometric spacetime 

[〈ℳ, �̂�, 𝟎〉] with the invariant physical metric �̂� = (1 + 𝜙)2𝜼, and the connection �̂�, with the 

components Γ𝑏𝑐
𝑎 = {

a
𝑏𝑐
}
�̂�

. NGN just picks out a non-Riemannian gauge. Neither NGN‘s scalar 

nor the Minkowski metric on their own are thus physical quantities; they are gauge-quantities: 

                                                           
170 Adherents of the so-called dynamical approach to spacetime symmetries, even regard this adequacy condition 
as analytically true (see Acuña, 2016; Myrvold, 2017). 
171 Asserting interpretative equivalence of NGN and NGEF goes beyond the foregoing claim that their formalisms 
pick out different gauges of the same Weyl geometry. NGN’s formalism might happen to be amenable to two 
interpretations (one of which the Weyl geometric one); but only one interpretation accurately limns reality. 
This would be an instance of the “discriminatory approach” towards dualities, such as the AdS/CFT 
correspondence (Le Bihan & Read, 2018, §6; see also Coffey, 2014).   
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only their gauge-invariant combination - in �̂� and Γ𝑏𝑐
𝑎  - is invested with physical (viz. 

chronogeometric and inertial) significance.    

This spacetime interpretation of NGN’s formalism overcomes all three shortcomings of the 

naïve field interpretation.172 We already saw that in the Riemann gauge (i.e. in NGEF’s 

formalism), which employs only the gauge-invariant geometric quantities �̂� and Γ𝑏𝑐
𝑎 , the 

minimal coupling scheme is no more problematic than in GR. The above matter action for the 

scalar in a potential, for instance, becomes: 

�̂�𝑚 ∝ ∫𝑑
4𝑥√|�̂�| (

1

2
(�̂�𝜑)

2
+ 𝑉(𝜑)). ( 64 ) 

Likewise, the spacetime interpretation extricates the theory from universal forces. Like in GR 

(cf. Earman & Friedman, 1973; Dieks, 1983; Nerlich, 2007, 2013; Lehmkuhl, 2014), the effects 

of gravity are absorbed by the inertial structure, encoded by the connection �̂�.  In particular, 

test particles traverse geodesics determined by �̂�. As a result, for instance, a cloud of dust 

changes its volume, when moving across the spacetime, but retains its shape. This isn’t due to 

the presence of a force: rather, it’s a purely kinematic effect grounded in the non-

Minkowskian – and, in fact, non-Riemannian (viz. Weylian) – inertial structure. 

Finally, the spacetime interpretation salvages the validity of Earman’s adequacy condition: the 

(Riemannian) manifold 〈ℳ, �̂�, �̂�〉 has 𝐶(1,3) as its symmetry group - the conformal group, 

mentioned in §3.2.  NGN’s dynamical symmetries –Poincaré transformations, dilatations and 

special conformal transformations, together with the redefinitions of the scalar- leave �̂� and 

�̂� invariant. Hence, all dynamical symmetries are symmetries of the spacetime 〈ℳ, �̂�, �̂�〉 (and 

vice versa –as Earman’s (1989, Ch. 3.4) second adequacy condition requires): with �̂� and �̂� 

being its salient invariant geometric structures,  [〈ℳ, �̂�, 𝟎〉] as the (Weyl-geometric) 

spacetime setting is now fully adequate. 

Having established, empirical, structural and interpretative equivalence between NGN and 

NGEF, we are now licenced to pronounce them theoretically equivalent (cf. Møller-Nielsen 

2017; Møller-Nielsen & Read, 2018; LeBihan & Read, 2018): they are merely representational 

variants of the same Weyl geometric spacetime theory – NG simpliciter. NG provides the 

                                                           
172 The spacetime interpretation also allows us to sidestep another, primarily semantic challenge to any field 
interpretation of NGN, analogous to the case in GR: which quantity (if any!) should we identify as the gravitational 
field (Lehmkuhl, 2008; Rey, 2013) –e.g. the metric, the Riemann tensor, the connection coefficients? 
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symmetry-free characterisation of the world which the equivalence class of naïve NGN models, 

related via Poincaré transformations, dilatations and special conformal transformations and 

their concomitant scalar redefinition, describes in different gauge-dependent quantities.   

It’s rewarding to briefly dwell on two analogies that illustrate, respectively, the relation 

between the naïvely interpreted NGN and NGEF, and the transition to the Weyl geometric 

super-theory NG.  

Consider first the relation between the field interpretation of models of NGN to the spacetime 

interpretation of models of NGEF. It exactly mimics the transition from Newtonian Gravity on 

Galilei spacetime to Newton-Cartan Theory (e.g. Pooley, 2013; Knox, 2011, 2014; Weatherall, 

2016, 2017). The former’s symmetry group - the so-called Maxwell group - is larger than 

the standard Galilei group. It also contains so-called dynamical shifts:  

{𝑥 
𝛷
→ {

𝑥 ′ = 𝑥 + 𝑑 (𝑡)

𝛷′ = 𝛷 − 𝑑 ̈ ∙ 𝑥 + 𝑓(𝑡)
. ( 65 ) 

Here, 𝑑  is an arbitrary (time-dependent) translation vector, and 𝑓(𝑡) an arbitrary scalar 

constant on simultaneity surfaces. Dynamical shifts have their counterpart in NGN’s dilatations 

and special conformal transformations, together with their respective simultaneous scalar 

redefinitions. Just as models of NGN, related via those transformations, are identified as the 

same spacetime NGEF, models of Newtonian Gravity on Galilei spacetime, related via 

dynamical shifts, are identified as the same models of Newton-Cartan Theory (e.g. Malament, 

2012, Ch. 4): from the latter’s vantage point, dynamical shifts are gauge transformations. 

Newton-Cartan Theory’s symmetry-free description is accomplished via geometrising 

Newtonian gravity: gravitational phenomena aren’t the effects of forces; they are 

manifestations of a non-Minkowskian inertial structure, encoded in the non-flat connection, 

subject to the (geometrised) Poisson Equation. In the same vein, NGEF (Riemann-)geometrises 

NGN: gravitational phenomena are manifestations of the non-Minkowskian inertial and 

chronogeometric structure, represented by �̂� and �̂�  of the Riemann manifold 〈ℳ, �̂�, 𝟎〉. 

Identifying models of NGEF and NGN as gauges of the same integrable Weyl geometry 

[〈ℳ, �̂�, 𝟎〉] was a conceptually distinct operation. It has an analogy in recognising the 

formulations of elementary quantum mechanics in momentum-space and the position-space 
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as physically equivalent: they are merely representational/notational variants of the same 

theory.  

In conclusion, we attained full equivalence between NGN and NGEF. They are mathematically 

equivalent representations of the same theory, NG – a theory about the Weyl-geometric 

spacetime [〈ℳ, (1 + 𝜙)2𝜼, 0〉]. NG’s chronogeometric structure is given by (1 + 𝜙)2𝜼; its 

inertial structure by the associated Levi-Civita connection 𝛁((1+𝜙)
2𝜼). 

VI.4.4 The Three Mysteries Resolved 

We can now harvest the fruits of our labour –and debunk the Three Mysteries of NG of §3.  

They consisted in putatively conflicting verdicts on the status of the Geodesic Principle (GP), 

gravitational energy and energy conservation that the naïve field interpretation (NGN) and the 

naïve spacetime interpretation (NGEF) yielded.   

VI.4.4.1: (M1) -The Geodesic Principle 

The First Mystery, (M1), consisted in the GP’s representation-dependent validity in NG: in NGN, 

one would prima facie expect test particles to follow Minkowskian geodesics; in NGEF, one 

expect them to follow non-Minkowskian ones.  

(M1)’s resolution is now patent: the Mystery rests on the fallacious identification of NGN’s 

spacetime structure as Minkowskian. NG’s spacetime metric is the Weyl-geometry’s invariant 

metric �̂� = (1 + 𝜙)2𝜼; its associated Levi-Civita connection 𝛁
(�̂�)

 defines NG’s spacetime 

geodesics, i.e. those representing NG’s inertial structure. Test particles (including extended 

ones in suitable limit) follow these geodesics. The GP thus is restored. 

The latter refers to the (unambiguous, i.e. representation-independent) spacetime 

geodesics.173 It’s imperative to heed this specification. Else, the GP can be trivially invalidated: 

                                                           
173 The insistence that the Geodesic Principle refer to the spacetime geodesics (rather than any other geodesic 
structure mathematically definable on a manifold) is underscored most clearly by the Ehlers-Schild-Pirani 
axiomatisation of geometric theories of gravity (see Ehlers, Schild & Pirani, 1972 for details; cf. also Capozziello 
et al., 2012). Its starting point are trajectories of test particles in free fall. They define a set of preferred curves. 
This induces a projective structure on the manifold, uniquely defining a class of geodesics up to re-
parameterisation (see e.g. Malament, 2012, Ch. 1.9). Upon further specifying the conformal structure (e.g. by 
considering the propagation of light rays in the geometric-optical limit), this uniquely fixes a geodesic structure. 
This procedure delivers the spacetime geodesics. 
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for any given (spacetime) geodesic path one can always find another metric for which the path 

isn’t a geodesic.  

The earlier (§3.1) diagnosis that NGN doesn’t respect the Geodesic Principle flouted this 

caveat: despite NGN‘s formal set-up as a theory on Minkowski spacetime, we opposed the 

identification of 𝛁
(𝜼)

 as the appropriate spacetime geodesic structure.  

4.4.2 (M2) – the Status of Gravitational Energy 

NG’s Second Mystery, (M2), concerned the apparently ambiguous (representation-

dependent) status of gravitational energy-stress. In NGN, one can ascribe canonical energy-

stress to the gravitational scalar 𝚯 – a prima facie impeccable candidate for gravitational 

energy. In NGEF, the most plausible approaches to gravitational energy were obstructed.  

The ambiguity about the status of gravitational energy is easily dispelled: the naïve realism 

about gravitational energy suggested by NGN isn’t tenable. Above, NGN was disclosed as the 

description of the (non-Riemann) gauge 〈ℳ, 𝜼, 2𝛁 ln(1 + 𝜙)〉 of the Weyl-geometric 

spacetime [〈ℳ, (1 + 𝜙)2𝜼, 0〉]. Hence, we can immediately discard 𝚯 as a candidate for 

genuine gravitational energy: not invariant under the spacetime’s symmetries (i.e. under the 

Weyl transformations (42)), it’s a gauge quantity.  

The remaining options for gravitational energy-stress echo those perused for NGEF.
174 None is 

satisfactory. The canonical energy-stress associated with NG’s gravitational degrees of 

freedom (viz. the spacetime metric’s conformal factor) – that is: the Noether currents 

associated with the invariance of NG’s gravitational action under rigid translations − yields the 

pseudotensors we already rejected (§3.2): for them to be to be physically well-defined, they 

would presuppose more spacetime structure than NG warrants. The other (tensorial) 

                                                           
174 It’s worthwhile spelling out the relationship between NGN’s gravitational energy 𝚯 and NGEF’s pseudotensor. 

We identified NGEF’s purely gravitational action as the Einstein-Hilbert action 𝑆𝑔𝑟𝑎𝑣[𝑔] = ∫𝑑
4𝑥 √|𝑔|𝑅 for the 

conformally flat metric 𝒈 = (1 + 𝜙)2𝜼. One easily verifies the following identity:  

𝑆𝑔𝑟𝑎𝑣[𝑔] ≡ −6∮𝑑𝚺 ∙ ((1 + ϕ)𝛁ϕ) + 12∫𝑑
4𝑥 √|𝜂|

(𝛁𝜙)𝟐

2
, 

where 𝑑𝚺 denotes the outward-pointing surface element. The term on the r.h.s. is proportional to NGN’s purely 
gravitational action. In other words: NGN’s and NGEF’s gravitational action (modulo proportionality constants) 
only differ via a surface term. 
This implies that NGEF’s (nonsymmetric) pseudotensor (i.e. canonical Noether current for 𝑔), when symmetrised 
via the Belinfante-Rosenfeld procedure, coincides with   NGN’s gravitational energy-stress (Leclerc, 2005). In 
consequence, the canonical, Noetherian road to gravitational energy in NGEF leads to either a physically 
unsuitable (nonsymmetric) pseudotensor, or a symmetric and tensorial but gauge-variant quantity (viz. NGN’s 
canonical energy-stress for the scalar).  
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proposals for NG’s gravitational energy carry over verbatim from NGEF. So do the objections 

to them. In conclusion, gravitational energy no longer seems a bona fide notion within NG’s 

conceptual framework (again fully analogously to the situation in GR).175    

This tallies with a broader, “[…] important lesson for how to understand energy in geometrized 

theories. […] There is a deep relationship between the classical notions of energy, work, force, 

and inertia. Energy is a measure of the ability to do work […]. But in theories in which 

gravitation is ‘geometrized’ in the sense that gravitation is understood as an inertial effect in 

curved spacetime, we should not think of gravitation as a force at all – and so, in particular, it 

is not the sort of thing that does work. To the contrary, work makes sense only as a measure 

of the deviation from inertial motion over some distance” (Dewar & Weatherall, 2018, pp. 26; 

cf. Dürr & Read, 2019, §4). 

4.4.3 (M3) – energy conservation 

The apparently representation-dependent validity of total energy conservation formed our 

Third Mystery. In NGN, only the sum total of gravitational (represented by 𝚯) and non-

gravitational energy (represented by NGN’s energy-stress tensor 𝐓) appeared to be (locally 

and globally) conserved, 𝛁 ∙ (𝚯 + 𝐓) =0 ; in NGEF, only NGEF’s non-gravitational energy-stress 

tensor is (locally and globally) conserved, �̂� ∙ �̂� =0.    

The realisation that NG is a Weyl-geometric spacetime theory immediately removes this prima 

facie ambiguity about energy conservation. NGN‘s account of total energy conservation must 

be dismissed as a reification of a triple gauge-artefact. From the Weyl-geometric perspective, 

all three elements on the l.h.s. of 𝛁 ∙ (𝚯 + 𝐓) =0 lack physical significance: The flat connection 

𝛁 doesn’t represent NG’s inertial structure; 𝚯 is a gauge-quantity (§4.4.2); and 𝐓 ≡

−
2

√|𝜂|

𝛿

𝛿𝜼
𝑆𝑚 is defined with respect to the gauge metric 𝜼. By contrast, the connection �̂� ≡

𝛁
((1+𝜙)2𝜼)

 and energy-stress tensor �̂� ≡ −
2

√|�̂�|

𝛿

𝛿�̂�
𝑆𝑚 in �̂� ∙ �̂� =0 invoke physically meaningful 

and intrinsically distinguished quantities: the connection supplying the geodesic structure of 

NG’s spacetime, and the spacetime metric �̂�, respectively. Following the arguments in §3.3 

for interpreting the vanishing covariant divergence of GR’s energy-stress tensor, we conclude: 

                                                           
175 A bonus of this anti-realism about gravitational energy is a neat solution for the negative energy problem 
besetting already Newtonian Gravity (e.g. Renn & Schemmel, 2012): if gravitational energy isn’t a physical fact, 
a fortiori it can’t be a worrying physical fact that gravitational energy is negative.    
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�̂� ∙ �̂� =0 should be construed as a conservation law for (non-gravitational) energy-stress, at 

least in inertial frames; thanks to the spacetime’s time-like Killing vector 𝝃, the energy-

momentum flux 𝐉 ≔ �̂� ∙ 𝛏 is even conserved covariantly, see Ch. III. (That this conservation 

law can be deduced from NG’s Lagrangian formulation, given in §4.2, in the standard way, 

strengthens its status as a law proper.) 

VI.5. Conclusion 

Behoving philosophy, the present chapter arose out of perplexity: the two empirically 

equivalent, historical versions of Nordström’s theory of gravity depict reality in prima facie 

incommensurate ways − a gravitational field on special-relativistic spacetime on the one hand, 

vs. a warped spacetime itself on the other. For worlds adequately described by Nordström’s 

theory, this led to opposing judgements about the validity of the weak equivalence principle, 

the status of gravitational energy, and energy conservation. Prima facie, the two versions in 

fact look like distinct, albeit empirically equivalent theories. This gives rise to challenges to a 

realist interpretation.  

Our reflections revealed, however, how to avert conventionalism (or anti-realism) about 

spacetime. It’s possible to overcome the ambiguity regarding those three putatively 

fundamental, physical notions. Both versions of Nordström Gravity can be subsumed under 

one overarching super-theory: models of each turn out to be merely different gauges of the 

same so-called integrable Weyl geometry − Nordström Gravity simpliciter. Thus understood, 

the two variants of NG are notational variants of each other, rather than distinct theories. 

Our analysis of Nordström Gravity is of interest for at least three wider-reaching reasons. 

• First, it exemplifies one possible strategy for responding to the challenge of 

interpreting dualities between theories: the two theories −say, the (putatively) 

empirically equivalent Schrödinger wave mechanics and Heisenberg’s matrix 

mechanics of the 1920s and 1930s (cf. Muller, 1997ab)− can be embedded into a 

deeper theory.176 (This is to be contrasted in particular with the “common core”-

                                                           
176 The qualifier “deeper“ is particularly apt for the example of Nordström Gravity. Not only does the super-
theory NG, unify both Nordström’s original theory NGN and the Einstein-Fokker theory NGEF. Due to its extension 
beyond the historically considered type of matter, NG‘s solution space is also (in a natural sense) richer than that 
of NGN and NGEF (cf. LeBihan & Read, 2018, §8.1). 
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strategy. The latter stipulates that one’s realist commitment should be confined to the 

structure common to both dual theories.)  

• Secondly, and relatedly, Nordström Gravity illustrates an observation made by Norton 

(2008) in the context of theory underdetermination: examples of genuinely worrying 

theory underdetermination are rare.  

Already at the level of Nordström’s theory and the Einstein-Fokker theory, restricted 

to their historical matter sector, we saw that the former contains superfluous structure 

−the (observationally undetectable) Minkowski background structure. (In this regard, 

NGN may perhaps be compared to Lorentz’s ether theory.) That their respective 

extensions to generic matter that preserve the two theories’ empirical equivalence 

yield merely notational variants of the same theory is further grist to Norton’s mills. 

•  Thirdly, our discussion serves as an effective antidote against the “fetishism of 

mathematics” – “[…] the tendency to assume that all the mathematical elements 

introduced in the formalization of a physical theory must necessarily correspond to 

something meaningful in the physical theory and even more, in the world that the 

physical theory purports to help us understand” (Stachel, 1993, p. 149).  

In short: One can’t distil a theory’s ontology from its formalism (cf. Maudlin, 2013). In 

particular, a theory’s spacetime structure can’t be read off trivially from its 

mathematical form. To identify its spacetime structure, one must pay attention to the 

theory’s dynamics, in particular to the way candidate spacetime structure actually 

couples to matter (cf. Brown, 2005; Knox, 2017; Pitts, 2017; Read, 2018).177  

Since claims about a theory’s ideology, such as the status of energy conservation, are 

inextricably intertwined with what one identifies as the theory’s spacetime structure, 

an interpretation of any gravitational theory mandates a circumspect analysis of its 

actual dynamics. 

  

                                                           
177 I wish to stress that this lesson should be heeded to irrespectively of one’s sympathies of either the dynamical 
or the geometrical approach to spacetime (cf. Read, 2018).  
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This chapter:  

In the fully geometrised formulation of Nordström Gravity, we found vivid demonstrations of 

how energy conservation works in generic spacetime theories, and how the notion of 

gravitational energy is affected by geometrisation – chiming with our previous findings in 

General Relativity.    

 

The next chapter:  

We are now in a position to pull together the threads of this dissertation. I’ll now give a general 

evaluation of the initial working hypotheses regarding energy conservation and gravitational 

energy.  
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VII. Conclusion 

Let‘s now harvest the fruits of our labours. I’ll first (§1) summarise the findings of this 

dissertation. Subsequently, in §2, I outline directions of future research.  

VII.1. Results 

Here, I’ll collate the results of the preceding analyses regarding the status of gravitational 

energy and energy conservation in geometric theories of gravity. 

This dissertation set out with the following working hypotheses: 

(C1) In “strength-3 geometric theories of gravity“ (Lehmkuhl) – theories in which gravity is 

reduced to inertial structure – gravitational energy ceases to be a meaningful, well-defined 

concept. Like the gravitational force, it’s “geometrised away“. 

(C2) In generic spacetime theories, energy conservation no longer holds. Rather than an 

apriori, apodictic principle, it’s contingent on the spacetime’s possessing suitable symmetries. 

The previous chapters equipped us with more refined formulations of these working 

hypotheses. The case studies comprising the bulk of this dissertation corroborated these 

improved versions.  

For reasons of logical dependence, let‘s begin with (C2). Following our discussion in Ch. II, we 

can distinguish between three forms of non-conservation: 

(A) Local non-conservation, but global conservation 

(B) Local conservation, but global non-conservation 

(C) Local and global non-conservation 

Option (A) corresponds to a situation in which energy – as a global/integral quantity, 

ascribable to regions of spacetime, or spacetime as a whole – is conserved, whilst at the 

local/differential level of energy fluxes/densities at a given point (represented by an energy-

stress tensor), energy either has sources/sinks, or ceases to be well-definable at all. That is: 

Either sinks/sources exist, but globally compensate each other; or such a local description in 

terms of sinks/sources isn’t even possible, while the total energy content is both well-defined 

and conserved. In this sense, energy is dislocated from one region to another without being 
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continuously transported across space in a manner that would allow one to track its path of 

propagation. A non-gravitational analogue is the probability current/flux of the non-relativistic 

Schrödinger Equation 𝑗 =
ℏ

2𝑚𝑖
(𝜓∗∇⃗⃗ 𝜓 − 𝜓∇⃗⃗ 𝜓∗):178 it’s a gauge-quantity in the sense that the 

probability flux is only defined up to a divergence-free term (i.e. up to transformations of the 

form 𝑗 → 𝑗 + ∇⃗⃗ × 𝐴 ); at the level of globally/integrally defined charges, however, they give 

rise to well-defined charges –the temporal change in (otherwise conserved) probability.    

Option (C) corresponds to the strongest possible form of non-conservation. Not only is energy 

conservation locally violated. (That is: Either sources/sinks of energy fluxes/densities exist, or 

a description in terms of energy fluxes/densities ceases to be well-defined.) Also globally 

energy isn’t conserved anymore: systems can gain/lose energy without there being 

identifiable sources/sinks responsible for this change. (No coherent story about the 

“extra“/“missing“ energy is forthcoming anymore. Hence, the talk of energy dislocation – 

which superseded the usual, but logically stronger talk of energy transport in the case of (A) – 

must be renounced in the case of (C).) A non-gravitational analogue is entropy in classical 

thermodynamics: locally, it‘s only defined up to a thermodynamic gauge transformation (and 

not well-defined in this sense); globally, it typically grows. 

Option (B) occupies a middle position between (A) and (C): although generically (non-

gravitational) local energy-stress lacked any sources/sinks, it isn’t conserved globally. It was 

found to be the form of non-conservation, most natural for GR – and somewhat unfamiliar 

from other theories.  

The salient points of (B) can be captured as a sharper formulation of (C2): 

(C2*) In generic spacetime theories, the validity of conservation of energy-momentum, both 

locally and globally, must be qualified.  

For generic spacetimes, energy conservation in its local form holds for the intrinsically 

privileged – viz. inertial – frames. For symmetric spacetimes the Killing vectors define energy-

momentum fluxes that are conserved in all frames. In both the generic and symmtric case, 

apparent violations are artefacts.  

                                                           
178 I choose this example – rather than, say, the 4-currents of a Klein-Gordon or a Dirac field – because typically 
the Schrödinger Equation isn’t presented within a Lagrangian setting; rather, it’s postulated as an axiom (see e.g. 
Messiah, 2014, Ch. II). Consequently, the probability flux is only defined indirectly (recall the critique of Hoefer 
in Ch. III.1) – via the continuity equation, entailed by the Schrödinger Equation.   
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Global energy conservation is contingent on the spacetime’s symmetries (Killing vectors): only 

in such spacetimes is energy-momentum well-defined and conserved. The increase/decrease 

in all other cases are brute facts that don’t call for any further explanation. 

This refinement of our initial working hypothesis, i.e. (C2*), was borne out by the case studies 

presented in Ch. II-VI: 

− In GR179 (Ch. III), generic spacetimes lack symmetries. An unambiguous/well-defined 4-

current of energy-stress of matter then exists only in special frames (viz. the inertial ones). 

This was argued to constitute a perfectly good sense of local conservation: apparent non-

conservation in other frames should be demoted to unphysical artefacts, on an equal 

footing with the centrifugal or Coriolis force in Classical Mechanics. Globally, the energy 

enclosed in a volume fails to be conserved: the total amount of (non-gravitational) energy-

momentum varies across time.  

If, however, the spacetime is symmetric, energy-momentum is well-defined and conserved 

both locally and globally. In both cases, the conservation law can be given a covariant form, 

valid in all possible frames. 

− In all variants of Newtonian Gravity – on Newtonian spacetime, on Galilei spacetime, on 

Maxwell-Huygens spacetime, and in the strength-3 geometrised Newton-Cartan-Theory – 

energy is conserved both locally and globally. As we saw in Ch. V, their respective 

spacetime settings all have the required background structure – the vector field generating 

the Newtonian time pseudo-metric. 

− Nordström Gravity, in the strength-3 geometric formulation presented in Ch. VI, admits of 

a well-defined local and global conservation of energy. Its spacetime group, the conformal 

group (which has the Poincaré group as a subgroup), supplies the prerequisite Killing fields. 

− One can easily find further examples by setting standard gravitational theories (e.g. a 

massive scalar gravity) on a fixed spacetime background (e.g. an FLRW spacetime). 

Depending on the latter‘s symmetries, in the resulting, otherwise perfectly ordinary 

“theory“, conservation ceases to hold. 

In Ch. II, III and V it was pointed out that due to the specialness of those spacetimes in GR‘s 

space of possible spacetimes, and their lack of robustness (under perturbations), the failure 

of energy conservation should be assumed as the explanatory default: only its conservation 

                                                           
179 In Dürr (ms*), I show that this result applies to a much larger class of purely metric extensions of GR, viz. f(R) 
Gravity (which includes GR as a special case).   
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calls for an explanation – in the form of symmetries. This generalises to other theories: if the 

theory posits the prerequisite spacetime symmetries at the level of kinematically possible 

models – i.e. demands spacetimes with certain symmetries as metaphysically necessary for all 

physically possible worlds, describable by the theory – energy conservation may be assumed 

as the explanatorily default principle. Otherwise, energy non-conservation should be assumed 

as the explanatorily default principle. 

The link between spacetime symmetries and energy conservation, given by (C2*), should be 

kept separate from geometrisation (of any strength): per se they are unrelated. Energy 

conservation can fail to hold – in any form (A)-(C) – in both geometric and non-geometric 

theories; the same is true of both dynamical and non-dynamical/absolute spacetimes. Solely 

relevant is the possession of spacetime symmetries. 

This leads us to (C1) – the link between strength-3 geometrisation of gravity and the status of 

gravitational energy. Our analyses in chapters II-VI clarified how the two working hypotheses 

(C1) and (C2) are linked. They afforded an explication and critical evaluation of the two 

principal arguments for the oft-perceived need to postulate gravitational energy: 

− The first invokes energy ascription as a reality criterion: according to this line of reasoning, only 

what carries energy counts as real.  

The argument is enthymematic, however: it’s predicated on the tacit premise that energy 

ascription is a necessary (and not merely a sufficient) criterion for the reality of a physical 

entity.180 No explicit argument is proffered for this premise in the literature.181 The standard 

                                                           
180 For instance, Norton (2019, sect. 4) concludes from the fact that GR’s metric “also represents the gravitational 
field“ that “(t)herefore it also carries energy and momentum […]“ (my emphasis). 
181 An exception is Bunge (2000, 2008). For him, energy precisifies and renders quantitative mutability, the 
capacity for change. The latter he proposes as a criterion for an entity’s materiality/physicality. Endorsing a 
thorough-going materialism, Bunge only ascribes reality only material/physical entities: he equates 
physicality/materiality and reality.  
Even if granting materialism, I remain sceptical. I’d like to hear more about the connection of mutability and 
energy – rather than, say, entropy. In particular, it’s unclear to me why any dynamical variable in physical 
theorising should eo ipso admit of a (presumably unique), well-defined quantification of that “mutability“ – and 
why we ought to identify it with energy. The need for an explicit argument can be seen also from the following 
thought. What is supposed to be the relevant notion of changeability: variability within a theory’s model or 
variability across different models of that theory? In case of the latter, mutability in the intended sense and 
energy as it’s customarily understood come apart: energy in physics is a quantity defined within a model of a 
theory – not a measure of variability across different models. Now consider the other option: to construe 
variability as variability within a given model of the theory. Immediately, one faces intuitive counterexamples. 
Think of a completely static Newtonian particle universe: should we regard it as an immaterial system just 
because nothing happens? (Such a model is surely empirically wrong – but that doesn’t necessarily imply that it 
doesn’t represent a material/physical system.) 
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(albeit, of course, not uncontroversial) guide to reality claims – an inference to the best 

explanation – doesn’t seem to underwrite such a criterion: in order to judge whether some 

quantity is real, on that “abductive“ line of reasoning, only its explanatory utility matters – not, 

whether we can ascribe it energy. 

Moreover, non-gravitational examples cast doubt upon energy ascription as a necessary reality 

criterion. Consider, for instance, Fermi’s degeneracy pressure. The repulsion between the 

constituents of a system of electrons doesn’t involve any energy transfer (or any true force, 

produced by an exchange of force carriers). No interaction energy exists. Still, the pressure 

beween the electrons is doubtlessly real (manifest in the existence of, say, neutron stars).  

Thus a spacetime realist can affirm the reality of spacetime structure to which gravity is 

reduced in strength-3 geometric theories. At the same time, she can deny that gravitational 

energy exists. The tidal deformations that a cloud of dust particles undergoes (e.g. due to a 

gravitational wave) are real without there being any need to attribute this effect to 

gravitational energy – gravity’s capacity to do work in the sense of deviation from inertial 

states of motion.   

− The second argument for gravitational energy explains the change in (non-gravitational) 

matter energy-stress of systems in the presence of gravity by the omission of gravitational 

energy-stress contributions. That is: In virtue of total energy-conservation, apparent violations 

in gravitational scenarios indicate the neglect of energy contributions from gravity. The 

standard presentation of Feynman’s sticky-bead argument (Ch. 2) was shown to be an instance 

of this argument. 

This inference, too, is predicated on a tacit premise – energy conservation. Its local form is: at 

any point, we can define unambiguously energy-stress 4-fluxes, and they are without 

sinks/sources. Its global form is: the associated global/integral quantities over suitable regions 

are well-defined and conserved.  

We saw in our discussion of (C2*) that in generic spacetime theories, this principle can no 

longer be taken for granted. Its application in the present context requires attention to some 

subtleties. Local conservation of non-gravitational energy-momentum was indeed argued to 

hold. Apparent violations should, I reasoned, be dismissed as artefacts of unphysical frames: 

they merit no more realism than fictitious forces in Classical Mechanics. This blocks the appeal 

to local energy conservation in the preceding argument for gravitational energy: any local 

violations of (non-gravitational) energy-momentum are artefacts of unphysical descriptions; 

they aren’t the manifestations of neglected gravitational contributions.  
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In contrast to local energy conservation, global (non-gravitational) energy conservation was 

found to hold only in special – highly symmetric – spacetimes. Consequently, unless the 

spacetimes in question belong to this class, increase/decrease of energy-momentum was just 

a brute fact. In particular, it isn’t the manifestation of neglected gravitational contributions. 

This blocks also the second main argument for gravitational energy.   

In short: neither of the two intuitive arguments for the conceptual necessity of gravitational 

energy holds water. Both rest on substantive background premises that can no longer be taken 

for granted in modern spacetime and gravitational theories.  

Let‘s now formulate the refined form of (C1):  

(C1*) In theories that reduce gravity to inertial structure local notions of gravitational energy 

– i.e. energy fluxes/densities – becomes questionable.  

The formal definability of global notions, however, becomes contingent on suitable properties 

of the theory’s spacetime structure (asymptotic symmetries). Whether such global notions 

should be taken seriously – whether they merit a realist stance – depends on the extent to 

which this prerequisite spacetime structure should be taken seriously (plays some explanatory 

role).   

This refined hypothesis, too, was borne out by the case studies of Ch. II-VI: 

− In GR, the paradigmatic strength-3 geometric theory of gravity, gravitational energy becomes 

problematic both locally and globally.  

We reviewed and dismissed various proposals for local gravitational energy-stress (Ch. III and 

IV). Pseudotensors, in particular, were rejected as non-geometric objects, defying a natural 

invariance condition, necessary for representing physical quantities (Ch. IV).  

The considered standard global notions presupposed asymptotically symmetric spacetimes. 

This was found to be either highly idealised by itself, or an “idle posit“ of an idealisation. It was 

therefore concluded that we have no empirical reason to assume global energy conservation. 

A promising, unexplored avenue for global notions, however, was briefly alluded to.182  

                                                           
182 Bracketing the prospects of these alternatives, I argued for eliminativism about gravitational energy in GR: we 
should reject both local and global notions of gravitational energy. This position also has explanatory pay-off for 
a few issues.  
First, eliminativism provides an elegant solution to the puzzle why it’s so difficult to localise (to find a genuinely 
physical, local expression for) gravitational energy: evidently, one can’t localise what doesn’t exist.  
Secondly, Butcher et al. (2010, p. 2) remark: “In spite of these various difficulties [to localise gravitational energy, 
P.D.], one aspect of this enduring problem stands opposed to conventional wisdom […]: when gravity and matter 
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These results carry over to f(R) theories of gravity (see also Dürr, ms*), and Brans-Dicke theory 

(Dürr, ms).183  

− Newtonian Gravity (Ch. V) in its non-strength-3 geometric variants admits of robust, well-

defined notions of local and global gravitational energy.  

An exception is Maxwell-Huygens Gravity: given its scarce conceptual resources, it’s not clear 

how even to define gravitational energy. But this result is in a sense expected: energy is a 

quantity defined relative to inertial structure – but Maxwell-Huygens spacetime doesn’t have 

a sufficiently robust notion of inertial structure.  

In its strength-3 geometric variant, Newton-Cartan theory, one encounters similar problems 

for local and (non-trivial) global ones (cf. Curiel, ms, sect. 2).   

− Nordström Gravity in its strength-3 geometric version of Ch. VI shares with GR the difficulties 

in defining a local notion of gravitational energy. Global notions can formally be defined in 

suitable models; in generic models, however, global gravitational energy is no longer well-

defined. Due to Nordström Gravity’s gross empirical inadequacy (already at the level of solar 

system tests), the question of realist commitment towards such global notions becomes moot. 

− It deserves to be mentioned that (C1*) is a claim specifically about strength-3 geometric 

theories. Weaker forms of geometrisation needn’t affect the definability of local gravitational 

energy (Dürr, ms, where the case Teleparallel Gravity are discussed).  

                                                           
interact, the exchange of energy is local! To see this we need look no further than the sticky bead detector: here, 
the energy exchange is certainly localized in so far as it takes place only within the confines of the detector.” 
Prima facie, it seems paradoxical that on the one hand, gravitational energy defies localizability; on other hand, 
the alleged energy exchange with matter is localisable. On eliminativism, the paradox evaporates. For 
eliminativists, only non-gravitational energy really exists. In the absence of spacetime symmetries, its local or 
global non-conservation is (by the eliminativist’s lights) only detectable in matter energy-stress: it’s the non-
conservation – the “extra” or “missing” bits in the (non-gravitational) energy balance – that realists about 
gravitational energy (according to the eliminativists: illicitly) reify. The localisability of the “energy-exchange” 
merely mirrors the fact that (1) non-gravitational energy is localisable and (2) generically, not conserved.  
Finally, eliminativism about gravitational energy also sheds light on an oddity of (non-geometrised) Newtonian 
Gravity that puzzled already Maxwell in 1846: the energy density of a gravitational field is negative (see Synge, 
1972, p. 373). Further peculiarities beset the energy of the Newtonian gravitational field. One concerns the 
multiplicity of formally definable energy fluxes (op.cit., sect. 4). (To make the issue even more bizarre: some of 
these fluxes yield finite gravitational velocities!) An eliminativist about GR’s gravitational energy can shrug off 
these oddities: they are merely artefacts of reifying gravitational energy, manifesting themselves in the 
Newtonian limit, too.   
183 The latter is shown to admit of a strength-3 geometrisation that solves some conceptual puzzles of the 
received “scalar field-cum-curved Riemannian geometry“ interpretation. The physical spacetime that absorbs 
the Brans-Dicke scalar is non-Riemannian: in addition to the Levi-Civita connection, representing inertial 
structure, it has a torsionful second connection, cf. Faraoni, 2004, Ch. 1.6, responsible for gravitational effects 
sui generis, such as the Nordtvedt Effect.) 
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(C1*) remains per se silent on the status of global notions of gravitational energy, when it’s 

formally definable. My negative verdict on the explanatory utility – on which my eliminativism 

of also global gravitational energy in GR was based – was expressly tentative (and 

programmatic). In Ch. V, it was suggested that in this regard progress would be achieved by 

adverting to the explanatory utility of such notions: a realist interpretation of global notions 

of gravitational energy, treating them as real physical quantities (rather than merely formal 

constructions) would be licenced, should they play an important role in explaining salient 

astrophysical and/or cosmological phenomena (e.g. energy processes in jets of black holes) – 

a follow-up project that calls for numerous case studies.  

VI.2. Outlook  

I’ll finally outline two lines of future research that emanate from the work presented above – 

to be tackled in future work. The first concerns a comparison of the problems diagnosed for 

gravitational energy in GR and those encountered in non-Abelian gauge theories. A second 

line of inquiry seeks on the one hand, to uncover the conditions of possibility of strength-3 

geometrisation; on the other hand, it examines strength-1 and strength-2 geometrisation as 

putative theoretical virtues.  

One natural follow-up will be to scrutinise Deser’s (2019) suggestion that GR’s problems with 

defining local and global gravitational energy are strongly analogous to those encountered in 

non-Abelian Yang-Mills theories, such as chromodynamics (Abbott & Deser, 1982): in the 

latter, too, well-defined (i.e. gauge-invariant) both locally and globally conserved charges 

require184 (i) a split of the gauge field into a background (which constitutes a solution of the 

source-free field equations) and a (not necessarily small) perturbation around this 

background, as well as (ii) the existence of Killing fields of this background.  

It would be instructive (especially with with an eye to the GR exceptionalism/egalitarianism 

controversy of Chapter IV) to fully unpack this comparison between GR and non-Abelian Yang-

Mills theories. Two questions are of special pertinence.185 The first concerns the conceptual 

significance, interpretation and justification of breaking local gauge invariance, as per (i) and 

                                                           
184 The reason for this this, according to Abbot & Deser, lies in the fact that, in contrast to Abelian Yang-Mills 
theories, the field strengths in non-Abelian ones aren’t invariant; rather, they are gauge vectors.  
185 Many thanks to Andrea Ferrari (Durham) for an extended discussion. 
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(ii).186 Secondly, one should clarify if (i) and (ii) might actually impose relevant physical 

restrictions. (Vis-à-vis the rich structure of the theory’s vacuum solution space – in particular, 

in light of the fact that not all such solutions are gauge-equivalent – singling out one such 

vacuum solution as a privileged background field has certainly some physical consequences.)   

Suppose that Deser’s claimed analogy between GR and non-Abelian Yang-Mills theories 

indeed holds. Then, a fundamental question would be whether it – i.e. need for certain 

additional assumptions of background structure for the definition of currents/charges – holds 

in virtue of technical reasons (a plausible candidate being the theories‘ non-Abelian 

character187), or whether there might exist a more abstract, general principle. (The results of 

this dissertation might indeed suggest so: the idea that field currents/charges invariably 

require a sufficiently robust, fixed background – be it spatiotemporal or some background 

fields – in order to be meaningfully defined.)  

A second set of follow-up questions delves more deeply into geometrisation in the form 

instantiated in GR, i.e. strength-3 geometrisation – as we saw, a momentous re-

conceptualisation of gravity. This dissertation studied its consequences.  Equally important, 

however, is to inquire into its presuppositions, i.e. its prerequisite conditions – the facts about 

gravity that make strength-3 geometrisation possible: due to what feature does gravity admit 

of a reduction to inertial structure? (A criterion often mentioned in this context, and worthy 

of analysis, is universal coupling, see e.g. Will, 2018, Ch.3.) This raises a further question: are 

also other (non-gravitational) quantities amenable to strength-3 geometrisation? That is: Do 

also other physical quantities display this feature that enable its geometrisation?    

In this context, it will be important also to probe the merits of strength-3 geometrisation. 

What justifies its distinction as the “optimum case for geometrisation“ (Lehmkuhl, 2009, p. 

279, my emphasis)? That is: Which theoretical virtues does strength-3 geometric theories 

exhibit that strength-2 geometric theories lack (or possess only to a lesser degree)?188  

                                                           
186 In GR, this locally broken gauge invariance takes the form of restricting general covariance to diffeomorphisms 
that reduce to the identity at infinity (so as to preserve asymptotic flatness). In terms of Belot (2008), this brings 
about a transition from GR’s general covariance to “locally general covariance“.     
187 Recall that the diffeomorphism group, which in some regards may be viewed as taking over the role of GR’s 
gauge group (as emphasised e.g. by Straumann, 2013, p. 6) is non-Abelian. 
188 It’s, of course, yet another question how seriously we should take these theoretical virtues (whatever they 
be). In particular, it’s apriori unclear that they are indeed truth-conducive or even genuinely explanatory – a 
caveat that even applies to unificatory power (cf. Karaca, 2012 for the case of Kaluza-Klein theory). 



220 
 

A particularly relevant virtue, underscored by Einstein himself (Lehmkuhl, 2014), is arguably 

unificatory power (as explicated e.g. by Kitcher, 1981, 1989; Maudlin, 1996; Bartelborth, 

2002). One may hence wonder whether strength-2 geometric theories count as less 

unificatory than strength-3 geometric ones.  

 If so, what is it about the latter’s reduction to inertial structure that effects this greater 

unification (or whatever its salient theoretical virtue it’s taken to have)? That is: Does it accrue 

from the reduction/elimination simpliciter achieved by strength-3 geometrisation or, more 

specifically, from the reduction to inertial structure?  

This is a pressing question: theories are easy to find whose inertial structure is either difficult 

to identify unambiguously (cf. Menon & Read, 2019 for some examples), or in which the 

notion’s meaningfulness itself is suspect. (Think of quantum gravity scenarios, such as Loop 

Quantum Gravity, in which there seems to exist no continuous spatiotemporal structure at 

the most fundamental level of description.). Even in GR, one may baulk at it: Einstein himself 

admitted, what constitutes inertial structure is imported from pre-general-relativistic theories 

“to ensure continuity of thought“ (see Lehmkuhl, 2014, 2019). What then is so special about 

inertial (or more generally, kinematic) structure that reduction to it makes it the “optimum 

case of geometrisation“?189 Indeed, some authors (such as Brown, 2005) dismiss the very 

distinction between kinematics and dynamics, whereas others affirm (e.g. DiSalle, 1995; 

Friedman, 2001, 2002; Curiel, 2018) its fundamentality. 

The converse of the question about the privileged status of reduction to inertial structure 

concerns the status of strength-1 and strength-2 geometrisation. Are they per se, as Einstein 

seemed to believe, completely without merit? Do they possess any unificatory power? In 

which sense is their geometrisation weaker than that of strength-3?  

To demarcate the three different forms of geometrisation from each other, both regarding 

their conceptual nature and scientific value, it will be illuminating to apply a more fine-grained 

distinction between various forms of reduction (see Van Gulick, 2001). On the one hand, we 

have ontological reduction – an intrinsic relation of items in the world, e.g. objects, properties 

                                                           
189 Relevant in this regard (but of course in need of elucidation) is that inertial structure usually accorded a 
distinguished status as encoding natural or default states (cf. Maudlin, 2005, Ch. 5; Hüttemann, 2018, part III): 
only deviation from it is seen in need for explanation in terms of a cause. What is the basis of this privileged 
status? Is it perhaps “merely” pragmatics?  
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or processes – including elimination, identity, composition, and supervenience. On the other 

hand, we have representational reduction – a relation between representational objects, e.g. 

concepts, theories or frameworks – including Nagelian derivability or replacability. It’s prima 

facie tempting to identify strength-1 geometrisations with instances of representational 

reduction; by contrast, the salient difference between strength-2 and strength-3 

geometrisation can be cashed out as instances of distinct forms of ontological reduction. 
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